LLAMA 3
IMPLEMENTED
IN PURE
NUMPY

OVERVIEW

As expected, the scale and performance is overwhlming. 24K GPUs, 15T training data, 10M
instruction data, 1.3M GPU hours, it’s all overwhelming. One interesting fact is that the model
structure hasn’t changed. Of course, Llama 3 have changed to using GQA, but this was already
implemented in Llama 2 70B, so it’s practically the same model structure.

We'll let it run for an accurate implementation, and we’ll use only NumPy to make the model
structure more intuitive to understand. We use the storiesl5M model that Andrej Karpathy
trained while creating llama.2, by converting it to a NumPy compressed format using a converter.
We will actually read in the model that Karpathy trained with the Llama 2 structure and
implement it as executable code. One thing to note is that the stories15M model does not use
GQA, so while we implement GQA in our code but not apply it to model behavior.

STRUCTURE

The Model has the following parameters:

dim: int
n_layers: int
B : int
n_kv_heads: Optional[int]
vocab _size: int
seq_len: int
Xx_new tokens: int

The designations D, HN, HD, VS, M etc. in the
comments are ised to manage the shape of each
variable in code. Also note that unlike the 24x in the
model illustation, storiesl5M model has 6 layers, so
it iterates 6x.

42dot LLM Architecture

softmax

Linear
RMS Norm

® 24X

Feed Forward
SwiGLU

RMS Norm

®

Masked Multi-Head
Attention

Q0O KQ v

RMS Norm

Embeddings

Input

ROPE #1

The first step Is to precompute cos and sin for RoPE embedding. These values are laterused by @ and K.
This calculation only needs to be done once for every request, so it can be cached. The size is HD(48)//2 ,
which is an exponential multiple of base(18@86) , so it can be a larger value, but the maximum value is

never more than 1, so it is converted to a scaled value between @ ~ 1, and then again to a value
1
100040 °

between 1 ~

np.arange(@®, 48, 2) # [24,]

1.8 / (base(10868) +x ([8, 2, R T 46] [/ 48))
= 1.8 / (base(16888) =+ [B, B.84166667, ..., B.9166667, ©.958333344])
=1.8 / [1, 1.4677993, ..., 4641.59, 6812.9194]
= [1, ©.68129286, ..., 8.80821544, ©.88014678]

The result of the calculation is np.outer multiplied by max_seq_len(256) , and then cos and sin are
calculated.

g

[256,] x [24,] = [256, 24
freqs = np.outer([® ~ 255], [1, 9.68129286, ..., 0.80021544, 0.80014678])
self.freqs _cos: Array["M, HD//2"] = np.cos(freqgs)
self.freqs_sin: Array["M, HD//2"] = np.sin(freqs)

The heatmap of cos and sin looks like this:

- 1.00

075 - 0.75
.50
70
&0
0 025
100
110
0.00
—0.25

—0.50

—0.75

i i]]]
SRS NS oS
—

1 1 1
D=y m = el = g (o Ta o

i i i i i i
o r« ™
e e -t R B

11

The stories15M model is max_seqg_len(256) , but | think it could scale up to 8K if we utilize all values up
to horizontal axis 24.

RMSNORM

RMSNorm normalizes activation values based on the Root Mean Square of the activation values, as opposed
to using traditional Mini Batch or Layer statistics. This has the advantage of scaling activation consistently,

regardless of Mini Batch size or Layer. Like other normalization techniques, it also has separate training
parameters.

A well-known explanation of the success of LaverNorm is its re-centering and re-scaling invariance
property. The lormer enables the model o be insensitive to shatt nmses on both inputs and weights,
and the latter keeps the outpul representations intact when both inputs and weights are randomly
scaled. In this paper, we hypothesize that the re-scaling invanance 1s the reason for success of
LayerNorm, rather than re-centering invariance.

We propose RMSNorm which only focuses on re-scaling invanance and regulanzes the summed
inputs simply according to the root mean square (RMS) statistic:

i

F .] b
d; = HME{EIF’IJ' where RMS(a) = "1\ . gni. (4)

Intuitively, RMSNorm simplifies LayerNorm by totally removing the mean statistic in Eq. ({3) at
the cost of sacrificing the invariance that mean normalization affords. When the mean of summed
inputs 15 zero, RMSNorm 15 exactly equal to LayerNorm. Although RMSNorm does not re-center

The formula umplementation 1s as follows:

: Array["B, L or 1, 1"] X Kk
epdims=True) + ,
Array["B, L or 1, D"]
return z *

The way to calculate QKV
is fo matmul one weight in
GPT and then split it, but
Llama have their own
weights for QKV, so we
need to matmul them
separately. Then, for
Multi-Head Attention, we
reshape each one to

separate them by Multi-
Head.

3

: 1‘ QHH1 HDH]
1 KN, HD"]

- 1, KVHN, HD"]

ROPE #2

Now it's time to actually apply the RoPE using the values we calculated earlier.

-
}-
d
¥
LY Yo
In R+, consider the matrix that rotates a given vector y , by a counterclockwise angle #in a fixed coordinate system. Then
COR N -l
FL —_ _ (1}
| SiNH COSH e
=
L H.. Vi ':I-'

ROPE is a new type of position encoding technique that has the characteristics of both absolute and relative, and
performs well because it has the characteristics of both. It only applies to Q and K, dividing each input by the sum of
its parts, then multiplying by cos and sin, adding and subtracting the results, and returning the sum back to reshape.

ROPE #2

- |
'S

™ M M O

(-] (-] [| [|
el el s s

v b bk LA

NN NN

— =

T =T =

x o X Lo

- &
L=

RoOPE are applied after the Q and K have been multiplied by the weights in the attention mechanism,
while in the vanilla transformer they’'re applied before.

Prefill

Decode

(Q * K*T) * V computation process with caching

Step 1

Queries

Step N

Chaeries

| 4 x;.q

Keys_Transpose
d

\

—)

l[.af hing K

1 Restoring

KV CACHE

X

from cache K

Keys_Transpose
d

3¢ «

Values that will be computed on this step

3

x|

Values Rasu s
I
.
& b4
l{athinlz W
Restoring
from cache
Values
Besults
5
I
e
r-4

Values that will be taken from cache

Since the GPT-style generative
model is Masked Attention, it
1s possible to KV Cache. Since
the previous result will always
be the same, regardless of
what comes after it, since we
are not allowed to see the next
word, we can cache K and V,
and Q only needs to compute
the last value. The cache is
held by max_seq_len(256), so
the result of the calculation is
put in and then extracted back
to the only current length.

, Start_pos: start_pos +
. -' rra V [| EJ ..

G) KVHN, HD"] =
's: Array["B,

, KVHN, HD"] =

H:

[:B, start _pos: start pos +
L
L

Here, we fetch the cache values and then transpose them back to reshape them, but this could be done more
efficiently by skipping this step. For reference, the maximum size of the KV Cache is 1 x 256 x 6 x 48 x 2 x
6 = 884 K on batch size 1. Since it is a 15M model, it takes up about 6% more memory.

Values

Multi-head

Keys

- ———

Queries |

Grouped-query

i i
L [|
¥ L1 # .
] i i
i]
i i

L]
L i

i |
Fi L]
& i
L]
L
i

Multi-query

''''''
ﬂﬂﬂﬂﬂﬂﬂﬂﬂ

GQA(GROUPED-QUERY ATTENTION)

-l- -
- - o
- -
- - _ &

-

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

GQA(GROUPED-QUERY ATTENTION)

1f n_rep ==
return x

z: Array["B, L, QHN, HD"] = np.

MQA, which is a Multi-query, has the advantage of being compact and memory-saving compared to MHA, which is a
Multi-head, but it suffers from poor performance and unstable learning. Therefore, Grouped-query, GQA, was
introduced in Llama 2. In Llama 2, GQA was only applied to 70B, but from Llama 3, GQA was applied to all models
above 8B. Since we are using a model that was trained without GQA, we do not use GQA, but we have implemented it
in the code. We have implemented it by simply copying it by a multiple, and it can be improved by referencing the
previous value for future optimization. We have avoided using GQA when n_rep==1.

SCALED DOT-PRODUCT ATTENTION

Attentions are calculated separately by Multi-Head.

OKT
Vg

Attt isntiOn(Q, K, IN) = s0O ftmax|(JIN

attention: Array["B, HN, L or 1, L"] = xgq @ xk.

1f mask 1s not None:

attention = attention + mask[None, None, :, :
attention = softmax(attention)
output: Array["B, HN, L or 1, HD"] = attention @ xv

Masking is only done at the beginning and only the last Q needs to be processed afterward, so no
masking is needed. The result can then be obtained with softmax and matmul. Finally, the result of the
Multi-Head calculation is reshaped to full dimension to combine the heads and matmul once more.

Computing the entire QKV at once is only done in the Prefill Phase. At this time, TTFT (Time To First Token) is
called Prefill Latency, and only ‘vector @ matrix’ operations need to be performed from the Decode Phase
onward. Flash Attention is also effective only when reducing the Prefill Latency during inference, and it
performs somewhat well when the input is long.

FEED FORWARD

In Llama model, Feed Forward uses 3 linear with matmul only and no bias, so unlike
GPT, it is not a complete fully-connected layer. We create a swish value from the silu
result, multiply 1t with x_V up-scaled from D to FD, and down-scale it again. Here, the
sizeof FDiIsFD=2*4 * D/ 3, which is D(288), so FD(768).

SwiGLU

In the paper, the SwiGLU formula looks like this:

Transformer (" Attention is all you need”)

FEN(xz) = max(0, W, + by)JWs 4 b

LLaMA

FFNgwigru(x, W, V. Ws) = (Swish; (zW) & V)W,

We use the swish function with § = 1. In this case it's called the Sigmoid

Linear Unit (SiLL) function.

L

swish|x) = rsipmoid|) =

I - e

Multiplying x_V with swish and
matmul it with W_2 is called SwiGLU.
This unique combination of multiple
feed forwards layers increases the
performance of the model. Let x be a
real number between approximately
- 14 11, which is the input to the
silu function. The silu
implementation is as follows:

LINEAR

After passing through all the transformer blocks, the final output is only
the last logit computed by matmul to speed things up. The transformer
block always outputs ["1, D"] as the result after the Prefill Phase.

GENERATION

Now, we generate tokens one after the other using the extracted logit. For simplicity, we've
omitted sampling from the generation process and only output the Greedy result.

e The first step is Prefill Phase, or
sometimes called Summarization.
It passes all input and starts at
position O. This is also where Flash
Attention comes into play.

| | | e From then on, it is the Decode

tnputs = 1n put_1ids Phase and thanks to the KV Cache,

pos = only the last token ID is passed to
else; e Q and the result is the also last
Lnputs logit. Here, we omit sampling and
only extract the maximum value. If
you want to add a sampling
process, you can take softmax and
implement top_p and top_k.

e You can now yield the token ID we
generated as a result, decode it in
the next step and print the output

token to finalize the process.

for 1, curr_pos in enumerate(range(L, max_new tokens)):
if 1L = 0:

(Lnputs y POS)
Xt logits]:, , 1. (-1, keepdims=True)
yield next 1id

EXAMPLE

You can run it like this:

$ python llama3.py "I have a dream

I have a dream. He dream of a big, beautiful garden full of flower
and tree. He dream of playing with hi friend and eating yummy snack.

One day, he wa walking in the garden when he saw

Token count: , elapsed: S, tokens/s

likejazz/llama3.np

amaJs.np Is pure NumFy implementation for Llama

3 modadel.

w408 % 23 {-}

SSLUE Stars Forks

likejazz/llama3.np: llama3.np is pure NumPy
implementation for Llama 3 model.

llama3.np is pure NumPy implementation for Llama 3 model. -
likejazz/llama3.np

