Post

Single Image to Novel Views with Semantic-Preserving Generative Warping ( GenWarp )

GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping

Curiosity: How can we generate novel views from a single image while preserving semantic details? What happens when we combine geometric warping with generative models?

GenWarp proposes a semantic-preserving generative warping framework for single-shot novel view synthesis. This approach enables T2I models to learn where to warp and where to generate, addressing limitations of existing methods.

Resources:

Organizations: SonyAI, Sony Group Corporation, ๊ณ ๋ ค๋Œ€ํ•™๊ต

Challenge Overview

Retrieve: Generating novel views from a single image faces significant challenges.

ChallengeDescriptionImpact
3D ComplexityComplex 3D scenesโš ๏ธ Difficult synthesis
Limited DataSparse multi-view datasetsโš ๏ธ Training limitations
Noisy DepthDepth estimation errorsโš ๏ธ Warping artifacts
Semantic LossDetails lost during warpingโš ๏ธ Quality degradation

Previous Approaches

Retrieve: Recent methods combining T2I models with monocular depth estimation.

Process:

  1. Estimate depth from input image
  2. Geometrically warp to novel view
  3. Inpaint warped image with T2I model

Limitations:

  • Noisy depth maps
  • Loss of semantic details
  • Poor quality in novel viewpoints

GenWarp Solution

Innovate: Semantic-preserving generative warping framework.

graph TB
    A[Single Input Image] --> B[Depth Estimation]
    A --> C[Source View Features]
    B --> D[Geometric Warping]
    C --> E[Cross-View Attention]
    D --> F[Warped Image]
    E --> G[Self-Attention]
    F --> H[Semantic-Preserving Generation]
    G --> H
    H --> I[Novel View]
    
    style A fill:#e1f5ff
    style H fill:#fff3cd
    style I fill:#d4edda

Key Innovation

Retrieve: GenWarp learns where to warp and where to generate.

Approach:

  • Augments cross-view attention with self-attention
  • Conditions generative model on source view images
  • Incorporates geometric warping signals
  • Preserves semantic details during warping

Architecture:

ComponentPurposeInnovation
Cross-View AttentionConnect source and target viewsโฌ†๏ธ View consistency
Self-AttentionPreserve semantic detailsโฌ†๏ธ Quality
Geometric WarpingTransform to novel viewโฌ†๏ธ Accuracy
Conditional GenerationSource view conditioningโฌ†๏ธ Fidelity

Key Takeaways

Retrieve: GenWarp addresses the challenge of single-image novel view synthesis by combining geometric warping with semantic-preserving generation, learning where to warp and where to generate.

Innovate: By augmenting cross-view attention with self-attention and conditioning on source views, GenWarp enables high-quality novel view synthesis while preserving semantic details that previous methods lost.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about novel view synthesis, retrieve insights from GenWarpโ€™s approach, and innovate by applying semantic-preserving techniques to your 3D vision applications.

Next Steps:

  • Read the full paper
  • Explore the project page
  • Wait for code release
  • Apply to your use cases

๐Ÿง™Paper Authors: Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin (Jesse) Lai , Seungryong Kim, Yuki Mitsufuji, PhD

 GenWarp Novel Views

Translate to Korean

๐ŸŒŸ๋…ผ๋ฌธ์˜ ๋ช‡ ๊ฐ€์ง€ ์ง€์นจ

  • ๐ŸŽฏ๋‹จ์ผ ์ด๋ฏธ์ง€์—์„œ ์ƒˆ๋กœ์šด ๋ทฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ 3D ์žฅ๋ฉด์˜ ๋ณต์žก์„ฑ๊ณผ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•  ๊ธฐ์กด ๋‹ค์ค‘ ๋ทฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ œํ•œ๋œ ๋‹ค์–‘์„ฑ์œผ๋กœ ์ธํ•ด ์–ด๋ ค์šด ์ž‘์—…์œผ๋กœ ๋‚จ์•„ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ๐ŸŽฏ ๋Œ€๊ทœ๋ชจ T2I(Text-to-Image) ๋ชจ๋ธ๊ณผ MDE(๋‹จ์•ˆ ๊นŠ์ด ์ถ”์ •)๋ฅผ ๊ฒฐํ•ฉํ•œ ์ตœ๊ทผ ์—ฐ๊ตฌ๋Š” ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์žˆ์–ด ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.

  • ๐ŸŽฏ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์—์„œ ์ž…๋ ฅ ๋ทฐ๋Š” ์ถ”์ •๋œ ๊นŠ์ด ๋งต์ด ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ทฐ๋กœ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋’คํ‹€๋ฆฐ ๋‹ค์Œ T2I ๋ชจ๋ธ์— ์˜ํ•ด ๋’คํ‹€๋ฆฐ ์ด๋ฏธ์ง€๋ฅผ ๊ทธ๋ฆฝ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹œ๋„๋Ÿฌ์šด ๊นŠ์ด ๋งต๊ณผ ์ž…๋ ฅ ๋ณด๊ธฐ๋ฅผ ์ƒˆ๋กœ์šด ๊ด€์ ์œผ๋กœ ์™œ๊ณกํ•  ๋•Œ ์˜๋ฏธ๋ก ์  ์„ธ๋ถ€ ์ •๋ณด๊ฐ€ ์†์‹ค๋˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค.

  • ๐ŸŽฏ์ด ๋…ผ๋ฌธ์—์„œ ์ €์ž๋“ค์€ T2I ์ƒ์„ฑ ๋ชจ๋ธ์ด ์…€ํ”„ ์–ดํ…์…˜์„ ํ†ตํ•ด ํฌ๋กœ์Šค ๋ทฐ ์–ดํ…์…˜์„ ๊ฐ•ํ™”ํ•˜์—ฌ ์›Œํ”„ํ•  ์œ„์น˜์™€ ์ƒ์„ฑ ์œ„์น˜๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์˜๋ฏธ๋ก ์  ๋ณด์กด ์ƒ์„ฑ ์›Œํ•‘ ํ”„๋ ˆ์ž„์›Œํฌ์ธ ๋‹จ์ผ ์ƒท ์†Œ์„ค ๋ทฐ ํ•ฉ์„ฑ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.

  • ๐ŸŽฏ๊ทธ๋“ค์˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์†Œ์Šค ๋ทฐ ์ด๋ฏธ์ง€์—์„œ ์ƒ์„ฑ ๋ชจ๋ธ์„ ์กฐ์ •ํ•˜๊ณ  ๊ธฐํ•˜ํ•™์  ๋’คํ‹€๋ฆผ ์‹ ํ˜ธ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๊ธฐ์กด ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.

๐Ÿข์กฐ์ง: SonyAI, Sony Group Corporation, ๊ณ ๋ ค๋Œ€ํ•™๊ต

๐Ÿง™๋…ผ๋ฌธ ์ €์ž: Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu, Chieh-Hsin (Jesse) Lai, Seungryong Kim, Yuki Mitsufuji, PhD

This post is licensed under CC BY 4.0 by the author.