Post

LLama Factory is one of the best Open-source tools

LLM Finetuning

LlaMA-Factory: The Best Open-Source LLM Fine-Tuning Tool

Curiosity: How can we make LLM fine-tuning accessible to everyone? What tools enable low-code, GUI-based fine-tuning for practitioners at all levels?

LlaMA-Factory is one of the best open-source tools for fine-tuning LLMs, especially if you’re new to fine-tuning and prefer a GUI-based or low-code approach. With 17k+ GitHub stars, it’s become the go-to solution for efficient, user-friendly LLM customization.

Why LlaMA-Factory?

graph TB
    A[LlaMA-Factory] --> B[GUI-Based]
    A --> C[Low-Code]
    A --> D[Comprehensive]
    
    B --> B1[Easy Setup]
    B --> B2[Visual Interface]
    B --> B3[Single GPU Support]
    
    C --> C1[Few Clicks]
    C --> C2[Pre-configured]
    C --> C3[Minimal Coding]
    
    D --> D1[Multiple Methods]
    D --> D2[Many Models]
    D --> D3[Full Pipeline]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda
    style D fill:#f8d7da

Key Features Overview

Feature CategoryCapabilitiesImpact
Model SupportLLaMA, Mistral, Qwen, Gemma, etc.⭐⭐⭐ Wide compatibility
Tuning MethodsSFT, RLHF, PPO, DPO, ORPO⭐⭐⭐ Comprehensive
PEFT & QuantizationLoRA, QLoRA, Freeze-tuning⭐⭐⭐ Efficient
Advanced AlgorithmsGaLore, DoRA, LongLoRA, etc.⭐⭐ Cutting-edge
MonitoringTensorBoard, Wandb, MLflow⭐⭐ Professional
DeploymentOpenAI API, Gradio, vLLM⭐⭐⭐ Production-ready

🌐 Diverse LLM Support

Retrieve: LlaMA-Factory supports a wide range of models, making it versatile for different use cases.

Model FamilyVersions SupportedUse Cases
LLaMAAll versions (1, 2, 3)General-purpose, research
MistralMistral, Mixtral-MoEEfficient, multilingual
QwenQwen seriesChinese, multilingual
GemmaGemma modelsGoogle’s open models
OthersVarious architecturesSpecialized tasks

🛠 Comprehensive Tuning Methods

Innovate: LlaMA-Factory offers a complete suite of fine-tuning approaches.

MethodDescriptionBest For
Continuous Pre-trainingFurther pre-training on domain dataDomain adaptation
Supervised Fine-Tuning (SFT)Task-specific trainingInstruction following
Reward ModelingPreference learningAlignment
PPOProximal Policy OptimizationRLHF
DPODirect Preference OptimizationEfficient alignment
ORPOOnline Reinforcement Policy OptimizationAdvanced RLHF

🔎 PEFT Methods & Quantization

Retrieve: Efficient fine-tuning options for resource-constrained environments.

graph LR
    A[Fine-Tuning Options] --> B[Full Tuning]
    A --> C[PEFT Methods]
    A --> D[Quantization]
    
    B --> B1[32-bit Full]
    
    C --> C1[16-bit Freeze]
    C --> C2[16-bit LoRA]
    C --> C3[QLoRA]
    
    D --> D1[2-bit QLoRA]
    D --> D2[4-bit QLoRA]
    D --> D3[8-bit QLoRA]
    
    style A fill:#e1f5ff
    style C fill:#fff3cd
    style D fill:#d4edda
MethodPrecisionMemorySpeedQuality
Full Tuning32-bitHighSlowBest
Freeze Tuning16-bitMediumMediumGood
LoRA16-bitLowFastGood
QLoRA 8-bit8-bitVery LowVery FastGood
QLoRA 4-bit4-bitMinimalFastestAcceptable

📈 Advanced Fine-Tuning Approaches

Innovate: State-of-the-art algorithms for improved performance and efficiency.

AlgorithmPurposeBenefit
GaLoreGradient Low-Rank ProjectionMemory efficiency
BAdamBlock-wise AdamOptimized training
DoRAWeight-Decomposed Low-Rank AdaptationBetter performance
LongLoRAEfficient long contextExtended context
Mixture-of-DepthsDynamic computationEfficiency
LoRA+Enhanced LoRABetter adaptation
LoftQLoRA Fine-Tuning aware QuantizationQuantization-aware
Agent TuningAgent-specific optimizationAgent applications

🧝‍♀️ Practical Optimization Tricks

Retrieve: Proven techniques to enhance fine-tuning outcomes.

TechniquePurposeImpact
FlashAttention-2Memory-efficient attention⬆️ Speed, ⬇️ Memory
UnslothFaster training⬆️ 2-5x speedup
RoPE ScalingExtended context⬆️ Context length
NEFTuneNoise-enhanced training⬆️ Performance

📊 Experiment Monitoring

Retrieve: Professional monitoring tools for tracking training progress.

ToolPurposeFeatures
LlamaBoardBuilt-in dashboardReal-time metrics
TensorBoardTensorFlow visualizationComprehensive logging
WandbWeights & BiasesExperiment tracking
MLflowML lifecycle managementModel versioning

🚀 Deployment Options

Innovate: Multiple deployment strategies for production use.

graph TB
    A[Fine-Tuned Model] --> B[OpenAI-Style API]
    A --> C[Gradio UI]
    A --> D[CLI with vLLM]
    
    B --> B1[Production API]
    C --> C1[Interactive Demo]
    D --> D1[High Performance]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda
    style D fill:#f8d7da
Deployment MethodUse CasePerformance
OpenAI-Style APIProduction servicesStandard
Gradio UIDemos, testingInteractive
vLLM WorkerHigh-throughput⚡ Fastest

Quick Start Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# LlaMA-Factory makes fine-tuning simple
# GUI-based approach - no code needed!

# Or programmatically:
from llamafactory import ModelFactory

# Load model
factory = ModelFactory()

# Configure fine-tuning
config = {
    "model_name": "llama-3-8b",
    "method": "lora",
    "rank": 8,
    "target_modules": ["q_proj", "v_proj"]
}

# Fine-tune
factory.fine_tune(
    model_path="llama-3-8b",
    data_path="training_data.json",
    config=config
)

GitHub Repository

⭐ 17k+ Stars: https://github.com/hiyouga/LLaMA-Factory

Why It’s Popular:

  • User-friendly GUI
  • Comprehensive features
  • Active community
  • Regular updates
  • Excellent documentation

Key Takeaways

Retrieve: LlaMA-Factory provides a comprehensive, user-friendly solution for LLM fine-tuning, supporting multiple models, methods, and deployment options.

Innovate: By leveraging LlaMA-Factory’s GUI and advanced features, you can efficiently fine-tune models for your specific use cases without extensive coding.

Curiosity → Retrieve → Innovation: Start with curiosity about fine-tuning, retrieve knowledge through LlaMA-Factory’s tools, and innovate by creating specialized models for your applications.

Next Steps:

  • Explore the GitHub repository
  • Try the GUI interface
  • Experiment with different methods
  • Deploy your fine-tuned models

🚨 I share #genai content daily, follow along for the latest updates! #llms #finetuning ( from Aishwarya Naresh Reganti)

Translate to Korean

🎊 LLM을 미세 조정하는 것이 처음이고 GUI 기반 또는 로우 코드 접근 방식을 선호하는 경우 LlaMA-Factory는 최고의 오픈 소스 도구 중 하나입니다!

다양한 오픈 소스 미세 조정 도구를 사용해 보았고 LlaMA Factory를 사용하는 것이 정말 즐거웠습니다. 사용자 친화적인 GUI 옵션(단일 GPU 사용 사례에 적합)이 있어 몇 번의 클릭만으로 매우 쉽게 미세 조정할 수 있습니다.

다른 멋진 기능은 다음과 같습니다.

  • 🌐 다양한 LLM 지원
    • LLaMA, Mistral, Mixtral-MoE, Qwen, Gemma 등의 모든 버전을 포함한 다양한 모델을 지원합니다.
  • 🛠 튜닝 방법
    • 지속적인 사전 학습, 지도 미세 조정, 보상 모델링, PPO, DPO 및 ORPO(Online Reinforcement Policy Optimization)를 포함하여 미세 조정을 위한 포괄적인 통합 방법 제품군을 제공합니다.
  • 🔎 PEFT 방법 & 양자화
    • 32비트 풀 튜닝 및 16비트 동결 튜닝, 16비트 LoRA 및 2/4/8비트 QLoRA 등과 같은 널리 사용되는 PEFT 접근 방식을 지원합니다!
  • 📈 고급 미세 조정 접근 방식
    • GaLore, BAdam, DoRA, LongLoRA Mixture-of-Depths, LoRA+, LoftQ 및 Agent Tuning과 같은 고급 알고리즘을 구현합니다. 이러한 알고리즘은 미세 조정 중에 모델 성능과 효율성을 개선하는 데 기여합니다.
  • 🧝 ♀️ 실용적인 트릭
    • FlashAttention-2, Unsloth, RoPE 스케일링, NEFTune 등을 포함한 미세 조정 결과를 향상시키기 위해 실용적인 트릭과 기술을 통합합니다. 이러한 트릭은 일반적인 문제를 해결하고 다양한 시나리오에서 모델 성능을 최적화하는 데 도움이 됩니다.
  • 📊 실험 모니터
    • LlamaBoard, TensorBoard, Wandb(가중치 및 편향), MLflow 등을 포함한 여러 실험 모니터링 도구를 지원합니다.
  • 🚀 더 빠른 추론
    • vLLM 작업자를 사용하여 OpenAI 스타일 API, Gradio UI 및 CLI를 통해 더 빠른 추론을 용이하게 합니다. 이를 통해 효율적인 추론 기능을 통해 실제 애플리케이션에서 미세 조정된 모델을 원활하게 배포하고 사용할 수 있습니다.

GitHub 저장소에는 이미 약 17개의 별이 있습니다! 여기에서 확인하십시오 : https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file

This post is licensed under CC BY 4.0 by the author.