Post

TRAG meets GNNs

GNN-RAG: Integrating Graphs into Modern RAG Workflows

Curiosity: How can we combine Knowledge Graphs with LLMs for better question answering? What happens when GNNs handle graph reasoning while LLMs handle language understanding?

GNN-RAG integrates Graph Neural Networks (GNNs) with Retrieval-Augmented Generation (RAG) to solve Knowledge Graph Question Answering (KGQA). The idea: GNN handles complex graph structure, while LLM leverages language understanding for final answers.

Resources:

The Challenge

Retrieve: Knowledge Graphs are powerful but challenging to query with natural language.

ComponentStrengthLimitation
Knowledge GraphsPowerful factual representationโš ๏ธ Hard to query with NL
GNNsExcel at graph reasoningโš ๏ธ Limited language understanding
LLMsStrong language understandingโš ๏ธ Struggle with graph reasoning

Problem: Vanilla RAG struggles with structured knowledge sources like KGs.

Why Vanilla RAG Struggles

Retrieve: Vanilla RAGโ€™s limitations with Knowledge Graphs.

Issues:

  • Relies heavily on LLMs for retrieval
  • LLMs not adept at handling complex graph information
  • Suboptimal performance on multi-hop questions
  • Struggles with multi-entity questions
  • Requires traversing multiple relationships

Impact: Poor performance on structured knowledge sources.

GNN-RAG Solution

Innovate: Combining GNNs and LLMs for optimal performance.

Division of Labor:

  • GNN: Processes graph structures, reasons over dense KG subgraphs, retrieves answer candidates
  • LLM: Leverages NLP abilities, reasons over GNN-provided information, generates final answers

Workflow

Retrieve: GNN-RAGโ€™s step-by-step process.

graph TB
    A[Question] --> B[GNN Processing]
    B --> C[KG Subgraph]
    C --> D[Candidate Answers]
    D --> E[Shortest Paths]
    E --> F[Reasoning Paths]
    F --> G[Verbalization]
    G --> H[LLM Reasoning]
    H --> I[Final Answer]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style H fill:#d4edda
    style I fill:#f8d7da

Steps:

  1. GNN Processing: Processes KG to identify candidate answers
  2. Path Extraction: Extracts shortest paths connecting question entities to candidates
  3. Verbalization: Converts paths to natural language
  4. LLM Reasoning: Final reasoning and answer generation

Performance

Retrieve: GNN-RAG achieves SOTA on major benchmarks.

Benchmarks:

  • WebQSP
  • ComplexWebQuestions (CWQ)

Results:

  • โœ… State-of-the-art performance
  • โœ… Outperforms GPT-4 in some cases
  • โœ… Particularly strong on multi-hop questions
  • โœ… Excellent on multi-entity questions

Architecture Comparison

ApproachGraph ReasoningLanguage UnderstandingPerformance
Vanilla RAGโŒ Weakโœ… Strongโš ๏ธ Suboptimal
GNN-RAGโœ… Strongโœ… Strongโœ… SOTA

Key Takeaways

Retrieve: GNN-RAG combines GNNsโ€™ graph reasoning with LLMsโ€™ language understanding, achieving SOTA on KGQA benchmarks by letting each component handle what it does best.

Innovate: By using GNNs for graph processing and LLMs for language understanding, GNN-RAG demonstrates how specialized components can work together to solve complex problems that neither can handle alone.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about Knowledge Graph Question Answering, retrieve insights from GNN-RAGโ€™s hybrid approach, and innovate by applying similar techniques to your structured knowledge applications.

Next Steps:

  • Read the full paper
  • Explore the code repository
  • Try GNN-RAG on your KGs
  • Adapt for your use cases

Curiosity: What insights can we retrieve from this? How does this connect to innovation in the field?

GNN-RAG achieves state-of-the-art results on two widely used KGQA benchmarks, WebQSP and ComplexWebQuestions (CWQ) and outperforms existing methods, including GPT-4, particularly on multi-hop and multi-entity questions.

It particularly seems to shine on challenging multi-hop and multi-entity questions.

๐Ÿง™Paper Authors: Costas Mavromatis, George Karypis 1Minnesota University

 GNN-RAG architecture

Translate to Korean

RAG์™€ GNN์˜ ๋งŒ๋‚จ: ๊ทธ๋ž˜ํ”„๋ฅผ ์ตœ์‹  ์›Œํฌํ”Œ๋กœ์šฐ์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.

์ง€์‹ ๊ทธ๋ž˜ํ”„(KG)๋Š” ์‚ฌ์‹ค์— ์ž…๊ฐํ•œ ์ง€์‹์„ ํ‘œํ˜„ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ๋ฐฉ๋ฒ•์ด์ง€๋งŒ ์ž์—ฐ์–ด๋กœ ์ฟผ๋ฆฌํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์—ฌ์ „ํžˆ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋Š” KG๋ณด๋‹ค ์ถ”๋ก ํ•˜๋Š” ๋ฐ ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค.

์ตœ๊ทผ ์ด ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐ ๋งŽ์€ ์ž‘์—…์ด ์žˆ์—ˆ์ง€๋งŒ ์•„์ง ์˜ฌ๋ฐ”๋ฅธ ๋ ˆ์‹œํ”ผ๋ฅผ ์ฐพ์ง€ ๋ชปํ•œ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

GNN-RAG๋Š” ์ธ๊ธฐ ์žˆ๋Š” RAG(Retrieval-augmented Generation) ์ถ”์„ธ์— ๊ธฐ๋Œ€์–ด ์ด๋ฅผ ๋ฐ”๊พธ๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์•„์ด๋””์–ด๋Š” GNN์ด ๋ณต์žกํ•œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ˜๋ฉด, LLM์€ ์–ธ์–ด ์ดํ•ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ข… ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๐Ÿค” Vanilla-RAG๋Š” ์ง€์‹ ๊ทธ๋ž˜ํ”„์™€ ๊ฐ™์€ ๊ตฌ์กฐํ™”๋œ ์ง€์‹ ์†Œ์Šค๋กœ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. GNN-RAG๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋งค์šฐ ๊น”๋”ํ•œ ์•„์ด๋””์–ด์ž…๋‹ˆ๋‹ค!

โ›ณ Vanilla-RAG๋Š” KG์— ๋‚ด์žฌ๋œ ๋ณต์žกํ•œ ๊ทธ๋ž˜ํ”„ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ๋Šฅ์ˆ™ํ•˜์ง€ ์•Š์€ LLM์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ธฐ ๋•Œ๋ฌธ์— KG์™€ ๊ฐ™์€ ๊ตฌ์กฐํ™”๋œ ์ž…๋ ฅ์— ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์„ฑ๋Šฅ์ด ์ตœ์ ํ™”๋˜์ง€ ์•Š์œผ๋ฉฐ, ํŠนํžˆ ๊ทธ๋ž˜ํ”„์—์„œ ์—ฌ๋Ÿฌ ๊ด€๊ณ„๋ฅผ ์ˆœํšŒํ•ด์•ผ ํ•˜๋Š” ๋‹ค์ค‘ ํ™‰ ๋ฐ ๋‹ค์ค‘ ์—”ํ„ฐํ‹ฐ ์งˆ๋ฌธ์—์„œ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋ฉ๋‹ˆ๋‹ค.

โ›ณ GNN-RAG๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LLM๊ณผ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์˜ ๊ฐ•์ ์„ ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.

  • ๐Ÿ’ก GNN: ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ฒ˜๋ฆฌ ๋ฐ ์ถ”๋ก ์— ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค. ์กฐ๋ฐ€ํ•œ KG ํ•˜์œ„ ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ตํ•ด ์ถ”๋ก ํ•˜์—ฌ ์ฃผ์–ด์ง„ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€ ํ›„๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•ฉ๋‹ˆ๋‹ค.
  • ๐Ÿ’กLLM: ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ GNN์—์„œ ์ œ๊ณตํ•˜๋Š” ์ •๋ณด๋ฅผ ์ถ”๊ฐ€๋กœ ์ถ”๋ก ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ‘‰ ์›Œํฌํ”Œ๋กœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ๐Ÿ”บ GNN์€ KG๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ํ›„๋ณด ๋‹ต๋ณ€์„ ์‹๋ณ„ํ•˜๊ณ  ๊ฒ€์ƒ‰ํ•ฉ๋‹ˆ๋‹ค.
  • ๐Ÿ”บKG์˜ ํ›„๋ณด์ž์—๊ฒŒ ๋‹ต๋ณ€ํ•˜๊ธฐ ์œ„ํ•ด ์งˆ๋ฌธ ์—”ํ„ฐํ‹ฐ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ์ตœ๋‹จ ๊ฒฝ๋กœ๊ฐ€ ์ถ”์ถœ๋˜์–ด ์ถ”๋ก  ๊ฒฝ๋กœ๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ๐Ÿ”บ์ด๋Ÿฌํ•œ ๊ฒฝ๋กœ๋Š” ์–ธ์–ดํ™”๋˜์–ด ์ตœ์ข… ์ถ”๋ก  ๋ฐ ๋‹ต๋ณ€ ์ƒ์„ฑ์„ ์œ„ํ•ด LLM์— ์ž…๋ ฅ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค.

GNN-RAG๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” KGQA ๋ฒค์น˜๋งˆํฌ์—์„œ ์ตœ์ฒจ๋‹จ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๋ฉฐ ๊ฒฝ์šฐ์— ๋”ฐ๋ผ GPT-4๋ฅผ ๋Šฅ๊ฐ€ํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.

GNN-RAG๋Š” ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋‘ ๊ฐ€์ง€ KGQA ๋ฒค์น˜๋งˆํฌ์ธ WebQSP ๋ฐ ComplexWebQuestions(CWQ)์—์„œ ์ตœ์ฒจ๋‹จ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ณ  ํŠนํžˆ ๋‹ค์ค‘ ํ™‰ ๋ฐ ๋‹ค์ค‘ ์—”ํ„ฐํ‹ฐ ์งˆ๋ฌธ์—์„œ GPT-4๋ฅผ ํฌํ•จํ•œ ๊ธฐ์กด ๋ฐฉ๋ฒ•์„ ๋Šฅ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

ํŠนํžˆ ๋„์ „์ ์ธ ๋‹ค์ค‘ ํ™‰ ๋ฐ ๋‹ค์ค‘ ์—”ํ„ฐํ‹ฐ ์งˆ๋ฌธ์— ๋น›์„ ๋ฐœํ•˜๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

This post is licensed under CC BY 4.0 by the author.