Post

Power of Graph Analytics

Power of Graph Analytics: Algorithms, Types, Techniques and 25 Top Python Libraries ๐Ÿ“š

Graph Analytics extracts valuable insights from complex, interconnected data with ability to represent relationships between entities.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Graph Composition:

  • Nodes: represent entities
  • Edges: link between entities

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Goals of Graph Analytics:

  • Identify key entities and their relationships
  • Discover patterns and anomalies in large-scale datasets
  • Generate recommendations and predictions based on past behavior
  • Uncover community structures within networks
  • Predict missing links and uncover hidden connections

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Type of Graph Analytics :

  1. Graph Neural Networks ( GNN ):

A class of deep learning models that operate directly on graph structures.

Examples of GNNs include:

  • โ“„ Graph Convolutional Networks (GCN)
  • โ“„ Graph Attention Networks (GAT)
  • โ“„ GraphSAGE

โ€”-

  1. Feature Extraction with Centrality Measures:

Centrality measures aim to identify the most important nodes in a graph.

Some examples include:

  • โ“„ Degree
  • โ“„ Betweenness
  • โ“„ Eigenvector
  • โ“„ PageRank
  • โ“„ Katz

โ€”โ€”

  1. Clustering:

Aim to group nodes into clusters based on their structural similarity.

Some examples include:

  • โ“„ Girvan-Newman
  • โ“„ Markov Cluster (MCL)
  • โ“„ Hierarchical agglomerative clustering (HAC)

โ€”โ€”

  1. Link Prediction:

Aim to predict missing links in a graph.

Some examples include:

  • โ“„ Louvain
  • โ“„ Infomap
  • โ“„ Walktrap

โ€”โ€”

  1. Community Detection:

Aim to identify groups of nodes that are densely connected within themselves but sparsely connected with the rest of the network.

Some examples include:

  • โ“„ Girvan-Newman
  • โ“„ Clauset-Newman-Moore
  • โ“„ Label Propagation
  • โ“„ Walktrap
  • โ“„ Fastgreedy

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Graph Analytics Techniques:

  • โžŠ Graph Traversal: Visit every node in a graph, typically in a systematic order.

  • โž‹ Shortest Path: Aim to find the shortest path between two nodes in a graph.

  • โžŒ Connected Components: Identify groups of nodes that are all connected to each other.

  • โž Minimum Spanning Tree: Find the minimum set of edges needed to connect all nodes in a graph.

  • โžŽ Maximum Flow: Find the maximum amount of flow that can pass through a graph, given constraints on the edges.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

I found the foll 25 Python Libraries:

  • ๐Ÿ“š NetworkX
  • ๐Ÿ“š igraph
  • ๐Ÿ“š karateclub
  • ๐Ÿ“š graph-tool
  • ๐Ÿ“š SNAP.py
  • ๐Ÿ“š Deep Graph Library (DGL)
  • ๐Ÿ“š PyTorch Geometric
  • ๐Ÿ“š Spektral
  • ๐Ÿ“š stellargraph
  • ๐Ÿ“š scikit-network
  • ๐Ÿ“š CDlib
  • ๐Ÿ“š leidenalg
  • ๐Ÿ“š markov-clustering
  • ๐Ÿ“š pyclustering
  • ๐Ÿ“š Graphein
  • ๐Ÿ“š nxviz
  • ๐Ÿ“š Grakn
  • ๐Ÿ“š Tulip
  • ๐Ÿ“š PowerGraph
  • ๐Ÿ“š Gephi
  • ๐Ÿ“š PyG
  • ๐Ÿ“š Python-I graph
  • ๐Ÿ“š NetworKit
  • ๐Ÿ“š Grakel
  • ๐Ÿ“š PyGraphistry

 Graph Analytics

Translate to Korean

๊ทธ๋ž˜ํ”„ ๋ถ„์„์˜ ํž˜: ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์œ ํ˜•, ๊ธฐ๋ฒ• ๋ฐ 25๊ฐœ์˜ ์ƒ์œ„ Python ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๐Ÿ“š

Graph Analytics๋Š” ์—”ํ„ฐํ‹ฐ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ธฐ๋Šฅ์„ ํ†ตํ•ด ๋ณต์žกํ•˜๊ณ  ์ƒํ˜ธ ์—ฐ๊ฒฐ๋œ ๋ฐ์ดํ„ฐ์—์„œ ๊ท€์ค‘ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๊ทธ๋ž˜ํ”„ ๊ตฌ์„ฑ:

  • ๋…ธ๋“œ: ์—”ํ„ฐํ‹ฐ๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • Edge: ๊ฐœ์ฒด ๊ฐ„ ๋งํฌ

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๊ทธ๋ž˜ํ”„ ๋ถ„์„์˜ ๋ชฉํ‘œ:

  • ์ฃผ์š” ์—”ํ„ฐํ‹ฐ ๋ฐ ํ•ด๋‹น ๊ด€๊ณ„ ์‹๋ณ„
  • ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ํŒจํ„ด๊ณผ ๋ณ€์น™ ๋ฐœ๊ฒฌ
  • ๊ณผ๊ฑฐ ํ–‰๋™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ถŒ์žฅ ์‚ฌํ•ญ ๋ฐ ์˜ˆ์ธก ์ƒ์„ฑ
  • ๋„คํŠธ์›Œํฌ ๋‚ด ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์กฐ ํŒŒ์•…
  • ๋ˆ„๋ฝ ๋œ ๋งํฌ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ์ˆจ๊ฒจ์ง„ ์—ฐ๊ฒฐ์„ ๋ฐœ๊ฒฌํ•˜์‹ญ์‹œ์˜ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๊ทธ๋ž˜ํ”„ ๋ถ„์„ ์œ ํ˜• :

  1. ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง (GNN) :

๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์—์„œ ์ง์ ‘ ์ž‘๋™ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•œ ํด๋ž˜์Šค์ž…๋‹ˆ๋‹ค.

GNN์˜ ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • (O) ๊ทธ๋ž˜ํ”„ ํ•ฉ์„ฑ๊ณฑ ๋„คํŠธ์›Œํฌ(GCN)
  • (O) ๊ทธ๋ž˜ํ”„ ์–ดํ…์…˜ ๋„คํŠธ์›Œํฌ(GAT)
  • (O) ๊ทธ๋ž˜ํ”„์„ธ์ด์ง€

โ€”-

  1. ์ค‘์‹ฌ์„ฑ ์ธก์ •์„ ํ†ตํ•œ ํŠน์ง• ์ถ”์ถœ:

์ค‘์‹ฌ์„ฑ ์ธก์ •์€ ๊ทธ๋ž˜ํ”„์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋…ธ๋“œ๋ฅผ ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

๋ช‡ ๊ฐ€์ง€ ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • (O) ์ •๋„
  • (O) ์ค‘๊ฐ„์„ฑ
  • (O) ๊ณ ์œ ๋ฒกํ„ฐ
  • (O) ํŽ˜์ด์ง€๋žญํฌ
  • (O) ์นด์ธ 

โ€”โ€”

  1. ํด๋Ÿฌ์Šคํ„ฐ๋ง:

๋…ธ๋“œ๋ฅผ ๊ตฌ์กฐ์  ์œ ์‚ฌ์„ฑ์— ๋”ฐ๋ผ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ๊ทธ๋ฃนํ™”ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

๋ช‡ ๊ฐ€์ง€ ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • (O) ๊ฑฐ๋ฒˆ-๋‰ด๋จผ
  • (O) ๋งˆ๋ฅด์ฝ”ํ”„ ์„ฑ๋‹จ(MCL)
  • (O) ๊ณ„์ธต์  ์‘์ง‘ ํด๋Ÿฌ์Šคํ„ฐ๋ง(HAC)

โ€”โ€”

  1. ๋งํฌ ์˜ˆ์ธก:

๊ทธ๋ž˜ํ”„์—์„œ ๋ˆ„๋ฝ๋œ ๋งํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

๋ช‡ ๊ฐ€์ง€ ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • (O) ๋ฃจ๋ฑ…
  • (O) ์ธํฌ๋งต
  • (O) ๋ณดํ–‰์šฉ

โ€”โ€”

  1. ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ฐ์ง€:

์ž์ฒด ๋‚ด๋ถ€์—๋Š” ์กฐ๋ฐ€ํ•˜๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์ง€๋งŒ ๋„คํŠธ์›Œํฌ์˜ ๋‚˜๋จธ์ง€ ๋ถ€๋ถ„๊ณผ๋Š” ๋“œ๋ฌผ๊ฒŒ ์—ฐ๊ฒฐ๋œ ๋…ธ๋“œ ๊ทธ๋ฃน์„ ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

๋ช‡ ๊ฐ€์ง€ ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • (O) ๊ฑฐ๋ฒˆ-๋‰ด๋จผ
  • (O) ํด๋ผ์šฐ์ œํŠธ-๋‰ด๋จผ-๋ฌด์–ด
  • (O) ๋ผ๋ฒจ ์ „ํŒŒ
  • (O) ๋ณดํ–‰์šฉ
  • (O) ๋น ๋ฅธ ์š•์‹ฌ

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๊ทธ๋ž˜ํ”„ ๋ถ„์„ ๊ธฐ๋ฒ•:

  • โžŠ ๊ทธ๋ž˜ํ”„ ์ˆœํšŒ: ์ผ๋ฐ˜์ ์œผ๋กœ ์ฒด๊ณ„์ ์ธ ์ˆœ์„œ๋กœ ๊ทธ๋ž˜ํ”„์˜ ๋ชจ๋“  ๋…ธ๋“œ๋ฅผ ๋ฐฉ๋ฌธํ•ฉ๋‹ˆ๋‹ค.

  • โž‹ ์ตœ๋‹จ ๊ฒฝ๋กœ: ๊ทธ๋ž˜ํ”„์—์„œ ๋‘ ๋…ธ๋“œ ์‚ฌ์ด์˜ ์ตœ๋‹จ ๊ฒฝ๋กœ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

  • โžŒ ์—ฐ๊ฒฐ๋œ ๊ตฌ์„ฑ ์š”์†Œ: ๋ชจ๋‘ ์„œ๋กœ ์—ฐ๊ฒฐ๋œ ๋…ธ๋“œ ๊ทธ๋ฃน์„ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค.

  • โž ์ตœ์†Œ ์ŠคํŒจ๋‹ ํŠธ๋ฆฌ: ๊ทธ๋ž˜ํ”„์˜ ๋ชจ๋“  ๋…ธ๋“œ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ตœ์†Œ ์—์ง€ ์„ธํŠธ๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค.

  • โžŽ ์ตœ๋Œ€ ํ๋ฆ„: ๊ฐ€์žฅ์ž๋ฆฌ์— ๋Œ€ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์ด ์ฃผ์–ด์ง€๋ฉด ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ต๊ณผํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ๋Œ€ ํ๋ฆ„๋Ÿ‰์„ ์ฐพ์Šต๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๋‚˜๋Š” foll 25 ํŒŒ์ด์ฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๋ฐœ๊ฒฌํ–ˆ๋‹ค :

  • ๐Ÿ“š ๋„คํŠธ์›ŒํฌX
  • ๐Ÿ“š ์•„์ด๊ทธ๋ž˜ํ”„
  • ๐Ÿ“š ๊ฐ€๋ผํ…Œ ํด๋Ÿฝ
  • ๐Ÿ“š ๊ทธ๋ž˜ํ”„ ๋„๊ตฌ
  • ๐Ÿ“š SNAP.py
  • ๐Ÿ“š ๋”ฅ ๊ทธ๋ž˜ํ”„ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(DGL)
  • ๐Ÿ“š PyTorch ๊ธฐํ•˜ํ•™
  • ๐Ÿ“š ์ŠคํŽ™ํŠธ๋ž„
  • ๐Ÿ“š ์Šคํ…”๋ผ๊ทธ๋ž˜ํ”„
  • ๐Ÿ“š scikit-๋„คํŠธ์›Œํฌ
  • ๐Ÿ“š CDlib (์˜๋ฌธ)
  • ๐Ÿ“š ๋ผ์ด๋ฐ๋‚ ๊ทธ(Leidenalg)
  • ๐Ÿ“š markov ํด๋Ÿฌ์Šคํ„ฐ๋ง
  • ๐Ÿ“š ํŒŒ์ดํด๋Ÿฌ์Šคํ„ฐ๋ง
  • ๐Ÿ“š ๊ทธ๋ž˜ํ•€
  • ๐Ÿ“š NXVIZ (์˜๋ฌธ)
  • ๐Ÿ“š ๊ทธ๋ผํฌ
  • ๐Ÿ“š ํŠค๋ฆฝ
  • ๐Ÿ“š ํŒŒ์›Œ๊ทธ๋ž˜ํ”„(PowerGraph)
  • ๐Ÿ“š ๊ฒŒํ”ผ
  • ๐Ÿ“š ํŒŒ์ด์ง€
  • ๐Ÿ“š Python-I ๊ทธ๋ž˜ํ”„
  • ๐Ÿ“š ๋„ท์›ํ‚ท
  • ๐Ÿ“š ๊ทธ๋ผ์ผˆ
  • ๐Ÿ“š PyGraphistry(ํŒŒ์ด๊ทธ๋ž˜ํ”ผ์ŠคํŠธ๋ฆฌ)
This post is licensed under CC BY 4.0 by the author.