Post

How can we further mitigate inference bottlenecks in large LLMs

How can we further mitigate inference bottlenecks in large #LLMs like Llama3 to enable real-time applications with minimal latency and performance degradation?

Letโ€™s Explore the solution:

1. Model Selection and Optimization: ๐Ÿงฉ

  • โ˜… Model Selection: Carefully consider the trade-off between model complexity and desired performance. Explore smaller, more efficient versions of Llama3 or similar models if real-time response is paramount. โšก
  • โ˜… Pruning: Remove redundant or unimportant weights and connections within the LLM to reduce its overall size and computational footprint. This can be achieved through techniques like magnitude pruning or channel pruning. ๐Ÿ”ฅ
  • โ˜… Quantization: Reduce the precision of the modelโ€™s weights and activations from 32-bit floats to lower precision formats (e.g., 16-bit floats or even 8-bit integers) without significant accuracy loss. This can significantly improve inference speed on compatible hardware. ๐ŸŽ๐Ÿ’จ
  • โ˜… Knowledge Distillation: Train a smaller, faster student model to mimic the behavior of the larger, more complex teacher model (Llama3). The student model can then be used for real-time applications while retaining the benefits of the larger model. ๐Ÿง โฉ

2. Hardware Acceleration: ๐Ÿš€

  • โ˜… GPUs: Leverage powerful Graphics Processing Units (GPUs) specifically designed for parallel processing tasks like LLM inference. Utilize frameworks like TensorFlow or PyTorch that offer optimized GPU kernels for efficient LLM execution. ๐Ÿ’ป๐Ÿ“ˆ
  • โ˜… TPUs: Consider Tensor Processing Units (TPUs) designed by companies like Google specifically for machine learning workloads. TPUs offer even higher performance gains for specific inference tasks compared to traditional GPUs. ๐Ÿ”ฅ๐Ÿ’ป
  • โ˜… Specialized Hardware: Explore emerging hardware solutions like AI accelerators or custom chips specifically designed for efficient LLM inference. These can offer significant performance improvements over traditional CPUs and GPUs. ๐Ÿค–โšก

3. Caching and Preprocessing: โณ

  • โ˜… Caching: Implement caching mechanisms to store frequently used model outputs or intermediate results. This can significantly reduce inference time for repetitive queries. ๐Ÿ’พ๐Ÿ”„
  • โ˜… Preprocessing: Preprocess user inputs before feeding them to the LLM. This can involve tasks like tokenization, normalization, and dimensionality reduction, all of which can be done offline and improve overall inference speed. โš’๐Ÿ‘ท

4. Model Parallelism and Batching: ๐Ÿ”ฅ๐Ÿ”ฅ

  • โ˜… Model Parallelism: Distribute the LLM across multiple processing units (GPUs or TPUs) to parallelize inference tasks. This can significantly reduce inference time for large models. ๐Ÿ’ป๐Ÿ’ป๐Ÿ’ป
  • โ˜… Batching: Process multiple user inputs simultaneously in batches instead of individually. This leverages the inherent parallelism of hardware and improves overall throughput. โšก๐Ÿ”ฅ

5. Efficient Software Design: ๐Ÿ’ป๐Ÿ‘จโ€๐Ÿ’ป

  • โ˜… Code Optimization: Profile and optimize the code used for LLM inference to identify and eliminate performance bottlenecks within the software itself. ๐Ÿ”๐Ÿ”ง
  • โ˜… Model Serving Frameworks: Utilize efficient model serving frameworks like TensorFlow Serving, PyTorch Serving, or Triton Inference Server to manage LLM deployment and optimize resource utilization. ๐Ÿ›ฐ๏ธ๐Ÿš€

P.S. More in the comment.

 LLM Research Trends

Translate to Korean

Llama3์™€ ๊ฐ™์€ ๋Œ€๊ทœ๋ชจ LLMs ์—์„œ ์ถ”๋ก  ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ๋”์šฑ ์™„ํ™”ํ•˜์—ฌ ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์‹ค์‹œ๊ฐ„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๊ตฌํ˜„ํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ• ๊นŒ์š”?

์†”๋ฃจ์…˜์„ ์‚ดํŽด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. ๋ชจ๋ธ ์„ ํƒ ๋ฐ ์ตœ์ ํ™”: ๐Ÿงฉ

  • โ˜… ๋ชจ๋ธ ์„ ํƒ: ๋ชจ๋ธ ๋ณต์žก์„ฑ๊ณผ ์›ํ•˜๋Š” ์„ฑ๋Šฅ ๊ฐ„์˜ ๊ท ํ˜•์„ ์‹ ์ค‘ํ•˜๊ฒŒ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์‹ค์‹œ๊ฐ„ ์‘๋‹ต์ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒฝ์šฐ ๋” ์ž‘๊ณ  ํšจ์œจ์ ์ธ Llama3 ๋˜๋Š” ์œ ์‚ฌํ•œ ๋ชจ๋ธ์„ ์‚ดํŽด๋ณด์‹ญ์‹œ์˜ค. โšก
  • โ˜… ์ •๋ฆฌ(Pruning): LLM ๋‚ด์—์„œ ์ค‘๋ณต๋˜๊ฑฐ๋‚˜ ์ค‘์š”ํ•˜์ง€ ์•Š์€ ๊ฐ€์ค‘์น˜์™€ ์—ฐ๊ฒฐ์„ ์ œ๊ฑฐํ•˜์—ฌ ์ „์ฒด ํฌ๊ธฐ์™€ ์—ฐ์‚ฐ ๊ณต๊ฐ„์„ ์ค„์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํฌ๊ธฐ ๊ฐ€์ง€์น˜๊ธฐ ๋˜๋Š” ์ฑ„๋„ ๊ฐ€์ง€์น˜๊ธฐ์™€ ๊ฐ™์€ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿ”ฅ
  • โ˜… ์–‘์žํ™”: ํฐ ์ •ํ™•๋„ ์†์‹ค ์—†์ด 32๋น„ํŠธ ๋ถ€๋™ ์†Œ์ˆ˜์ ์—์„œ ๋” ๋‚ฎ์€ ์ •๋ฐ€๋„ ํ˜•์‹(์˜ˆ: 16๋น„ํŠธ ๋ถ€๋™ ์†Œ์ˆ˜์  ๋˜๋Š” 8๋น„ํŠธ ์ •์ˆ˜)์œผ๋กœ ๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ๋ฐ ํ™œ์„ฑํ™”์˜ ์ •๋ฐ€๋„๋ฅผ ์ค„์ž…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ํ˜ธํ™˜๋˜๋Š” ํ•˜๋“œ์›จ์–ด์—์„œ ์ถ”๋ก  ์†๋„๊ฐ€ ํฌ๊ฒŒ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐ŸŽ๐Ÿ’จ
  • โ˜… ์ง€์‹ ์ฆ๋ฅ˜: ๋” ์ž‘๊ณ  ๋” ๋น ๋ฅธ ํ•™์ƒ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผœ ๋” ํฌ๊ณ  ๋ณต์žกํ•œ ๊ต์‚ฌ ๋ชจ๋ธ(Llama3)์˜ ๋™์ž‘์„ ๋ชจ๋ฐฉํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ํ•™์ƒ ๋ชจ๋ธ์„ ์‹ค์‹œ๊ฐ„ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์‚ฌ์šฉํ•˜๋ฉด์„œ ๋” ํฐ ๋ชจ๋ธ์˜ ์ด์ ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿง โฉ

2. ํ•˜๋“œ์›จ์–ด ๊ฐ€์†: ๐Ÿš€

  • โ˜… GPU: LLM ์ถ”๋ก ๊ณผ ๊ฐ™์€ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ์ž‘์—…์„ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ ๊ฐ•๋ ฅํ•œ ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜(GPU)๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ํšจ์œจ์ ์ธ LLM ์‹คํ–‰์„ ์œ„ํ•ด ์ตœ์ ํ™”๋œ GPU ์ปค๋„์„ ์ œ๊ณตํ•˜๋Š” TensorFlow ๋˜๋Š” PyTorch์™€ ๊ฐ™์€ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ’ป๐Ÿ“ˆ
  • โ˜… TPU: Google๊ณผ ๊ฐ™์€ ํšŒ์‚ฌ์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์›Œํฌ๋กœ๋“œ๋ฅผ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„ํ•œ TPU(Tensor Processing Unit)๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. TPU๋Š” ๊ธฐ์กด GPU์— ๋น„ํ•ด ํŠน์ • ์ถ”๋ก  ์ž‘์—…์— ๋Œ€ํ•ด ํ›จ์”ฌ ๋” ๋†’์€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ”ฅ๐Ÿ’ป
  • โ˜… ํŠน์ˆ˜ ํ•˜๋“œ์›จ์–ด: ํšจ์œจ์ ์ธ LLM ์ถ”๋ก ์„ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋œ AI ๊ฐ€์†๊ธฐ ๋˜๋Š” ๋งž์ถคํ˜• ์นฉ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ํ•˜๋“œ์›จ์–ด ์†”๋ฃจ์…˜์„ ์‚ดํŽด๋ณด์„ธ์š”. ์ด๋Š” ๊ธฐ์กด CPU ๋ฐ GPU์— ๋น„ํ•ด ์ƒ๋‹นํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿค–โšก

3. ์บ์‹ฑ ๋ฐ ์ „์ฒ˜๋ฆฌ: โณ

  • โ˜… ์บ์‹ฑ: ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” ๋ชจ๋ธ ์ถœ๋ ฅ ๋˜๋Š” ์ค‘๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๋Š” ์บ์‹ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฐ˜๋ณต์ ์ธ ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ์ถ”๋ก  ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿ’พ๐Ÿ”„
  • โ˜… ์ „์ฒ˜๋ฆฌ(Preprocessing): ์‚ฌ์šฉ์ž ์ž…๋ ฅ์„ LLM์— ๊ณต๊ธ‰ํ•˜๊ธฐ ์ „์— ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ํ† ํฐํ™”, ์ •๊ทœํ™” ๋ฐ ์ฐจ์› ์ถ•์†Œ์™€ ๊ฐ™์€ ์ž‘์—…์ด ํฌํ•จ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋ชจ๋“  ์ž‘์—…์„ ์˜คํ”„๋ผ์ธ์—์„œ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ „๋ฐ˜์ ์ธ ์ถ”๋ก  ์†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. โš’๐Ÿ‘ท

4. ๋ชจ๋ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๋ฐ ์ผ๊ด„ ์ฒ˜๋ฆฌ: ๐Ÿ”ฅ๐Ÿ”ฅ

  • โ˜… ๋ชจ๋ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ: LLM์„ ์—ฌ๋Ÿฌ ์ฒ˜๋ฆฌ ์žฅ์น˜(GPU ๋˜๋Š” TPU)์— ๋ถ„์‚ฐํ•˜์—ฌ ์ถ”๋ก  ์ž‘์—…์„ ๋ณ‘๋ ฌํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์˜ ์ถ”๋ก  ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿ’ป๐Ÿ’ป๐Ÿ’ป
  • โ˜… ์ผ๊ด„ ์ฒ˜๋ฆฌ: ์—ฌ๋Ÿฌ ์‚ฌ์šฉ์ž ์ž…๋ ฅ์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์ง€ ์•Š๊ณ  ์ผ๊ด„ ์ฒ˜๋ฆฌํ•˜์—ฌ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ํ•˜๋“œ์›จ์–ด์˜ ๊ณ ์œ ํ•œ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜๊ณ  ์ „์ฒด ์ฒ˜๋ฆฌ๋Ÿ‰์ด ํ–ฅ์ƒ๋ฉ๋‹ˆ๋‹ค. โšก๐Ÿ”ฅ

5. ํšจ์œจ์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ์„ค๊ณ„: ๐Ÿ’ป๐Ÿ‘จโ€๐Ÿ’ป โ€

  • โ˜… ์ฝ”๋“œ ์ตœ์ ํ™”: LLM ์ถ”๋ก ์— ์‚ฌ์šฉ๋˜๋Š” ์ฝ”๋“œ๋ฅผ ํ”„๋กœํŒŒ์ผ๋งํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด ์ž์ฒด ๋‚ด์˜ ์„ฑ๋Šฅ ์ €ํ•˜ ์š”์ธ(bottleneck)์„ ์‹๋ณ„ํ•˜๊ณ  ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค. ํ”„๋กœํŒŒ์ผ๋ง์€ ํ”„๋กœ๊ทธ๋žจ ์‹คํ–‰ ์ค‘ ๊ฐ ๋ถ€๋ถ„์ด ์†Œ์š”๋˜๋Š” ์‹œ๊ฐ„์„ ์ธก์ •ํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๐Ÿ”๐Ÿ”ง
  • โ˜… ๋ชจ๋ธ ์„œ๋น™ ํ”„๋ ˆ์ž„์›Œํฌ: TensorFlow Serving, PyTorch Serving, Triton Inference Server์™€ ๊ฐ™์€ ํšจ์œจ์ ์ธ ๋ชจ๋ธ ์„œ๋น™ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ LLM ๋ฐฐํฌ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ  ๋ฆฌ์†Œ์Šค ํ™œ์šฉ๋„๋ฅผ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” LLM ๋ชจ๋ธ์„ ๋กœ๋”ฉ, ์‹คํ–‰, ๊ด€๋ฆฌํ•˜๋Š” ๊ณผ์ •์„ ๊ฐ„์†Œํ™”ํ•˜์—ฌ ํšจ์œจ์ ์ธ ์ถ”๋ก ์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ›ฐ๏ธ๐Ÿš€

์ถ”์‹  : ๋Œ“๊ธ€์— ๋” ๋งŽ์€ ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

This post is licensed under CC BY 4.0 by the author.