Post

What are the next big trends in LLM research?

Curiosity: What are the emerging trends in LLM research? How can we stay updated with rapid progress in the field?

The LLM space is experiencing rapid progress, with new papers or releases almost every day. Understanding emerging trends helps navigate this fast-moving landscape.

Complete Guide: https://github.com/aishwaryanr/awesome-generative-ai-guide/blob/main/free_courses/Applied_LLMs_Mastery_2024/week10_research_trends.md

graph TB
    A[LLM Research Trends] --> B[Multi-Modal LLMs]
    A --> C[Open-Source LLMs]
    A --> D[Domain-Specific LLMs]
    A --> E[LLM Agents]
    A --> F[Smaller LLMs]
    A --> G[Non-Transformer LLMs]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda
    style D fill:#f8d7da
    style E fill:#e7d4f8
    style F fill:#d1ecf1
    style G fill:#ffeaa7

1. Multi-Modal LLMs

Retrieve: Combining text processing with multimodal components like audio, imagery, and videos.

ModelCapabilitiesUse Case
OpenAI SoraVideo generationContent creation
GeminiText, image, videoGeneral purpose
LLaVAVision-languageVisual understanding

Impact: Enables richer understanding and generation across modalities.

2. Open-Source LLMs

Retrieve: Models providing weights, checkpoints, and training data for transparency.

ModelFeaturesBenefit
LLM360Full transparencyReproducibility
LLaMAModel weightsAccessibility
OLMoTraining dataResearch
Llama-3Open weightsCommunity

Impact: Promotes fairness, transparency, and community innovation.

3. Domain-Specific LLMs

Innovate: LLMs tailored for specific fields with optimized performance.

ModelDomainApplication
BioGPTBiologyScientific research
StarCoderCode generationSoftware development
MathVistaMathematicsProblem solving

Impact: Better performance in specialized tasks.

4. LLM Agents

Retrieve: LLMs combined with planning and memory modules for complex tasks.

AgentCapabilitiesUse Case
ChemCrowChemistry tasksScientific research
ToolLLMTool usageAutomation
OS-CopilotOS operationsSystem management

Impact: Enables autonomous task execution.

5. Smaller LLMs (Including Quantized)

Innovate: Reduced precision or parameters for resource-constrained deployment.

ModelSizeBenefit
BitNetQuantizedEfficiency
Gemma 1B1B parametersAccessibility
Lit-LLaMALightweightEdge devices

Impact: Makes LLMs accessible on edge devices.

6. Non-Transformer LLMs

Retrieve: Alternative architectures addressing transformer limitations.

ModelArchitectureAdvantage
MambaState spaceEfficiency
RMKVRNN-basedLong context

Impact: Offers solutions to transformer pain points.

Trend Comparison

TrendFocusKey Benefit
Multi-ModalRich inputs/outputs⬆️ Capabilities
Open-SourceTransparency⬆️ Accessibility
Domain-SpecificSpecialization⬆️ Performance
AgentsAutonomy⬆️ Task execution
Smaller LLMsEfficiency⬇️ Resource needs
Non-TransformerArchitecture⬆️ Alternatives

Key Takeaways

Retrieve: Six major trends are shaping LLM research: multi-modal capabilities, open-source models, domain-specific optimization, agent systems, smaller/quantized models, and non-transformer architectures.

Innovate: By understanding these trends, you can identify opportunities to apply new techniques, build specialized models, and create efficient applications that leverage the latest advances.

Curiosity → Retrieve → Innovation: Start with curiosity about LLM research directions, retrieve insights from emerging trends, and innovate by applying these advances to solve real-world problems.

Next Steps:

  • Explore the complete guide
  • Study specific trends
  • Experiment with new models

 LLM Research Trends

Translate to Korean

내 가이드를 사용하여 다가오는 모든 트렌드를 따라잡으세요!

💡 LLM 분야는 거의 매일 새로운 논문이나 발표를 통해 급속한 발전을 이루고 있습니다.

최신 발전 사항을 최신 상태로 유지하려는 경우 새로운 패턴에 대한 가이드가 있습니다. https://github.com/aishwaryanr/awesome-generative-ai-guide/blob/main/free_courses/Applied_LLMs_Mastery_2024/week10_research_trends.md

그들은:

🚀멀티모달 LLM

  • 📕텍스트 처리를 오디오, 이미지 및 비디오와 같은 다중 모드 구성 요소와 결합합니다. 예: OpenAI Sora, Gemini, LLaVA

🚀오픈 소스 LLM

  • 📕오픈 소스 모델은 모델 가중치와 선택적으로 체크포인트 및 학습 데이터를 제공하여 공정성과 투명성을 촉진합니다. 예: LLM360, LLaMA, OLMo, Llama-3

🚀도메인별 LLM

  • 📕도메인별 LLM은 코드 생성 또는 생물학과 같은 특정 분야에서 탁월한 성능을 발휘하도록 맞춤화되어 그에 따라 성능을 최적화합니다. 예: BioGPT, StarCoder, MathVista

🚀LLM 에이전트

  • 📕LLM 에이전트는 복잡한 작업을 실행하기 위해 LLM이 계획 및 메모리와 같은 모듈과 결합한 애플리케이션입니다. 예: ChemCrow, ToolLLM, OS-Copilot

🚀더 작은 LLM(양자화된 LLM 포함)

  • 📕정밀도가 낮거나 매개변수가 적은 LLM은 리소스가 제한된 장치에 배포하는 데 적합합니다. 예: BitNet, Gemma 1B, Lit-LLaMA

🚀비변압기 LLM

-📕표준 트랜스포머 아키텍처(예: RNN 통합)에서 벗어나 트랜스포머 문제점에 대한 솔루션을 제공하는 LLM입니다. 예: 맘바, RMKV —

This post is licensed under CC BY 4.0 by the author.