Post

Want to build your first ๐—Ÿ๐—Ÿ๐—  ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ but don't know where to start?

 Architecture of LLM System

If you want to ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป in a ๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐˜„๐—ฎ๐˜† to ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—Ÿ๐—Ÿ๐—  ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ using good ๐—Ÿ๐—Ÿ๐— ๐—ข๐—ฝ๐˜€ principlesโ€ฆ

We want to announce that we just ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐Ÿด ๐— ๐—ฒ๐—ฑ๐—ถ๐˜‚๐—บ ๐—น๐—ฒ๐˜€๐˜€๐—ผ๐—ป๐˜€ for the ๐—›๐—ฎ๐—ป๐—ฑ๐˜€-๐—ผ๐—ป ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐—ฐ๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ that will put you on the right track โ†“

.

Within the ๐Ÿด ๐— ๐—ฒ๐—ฑ๐—ถ๐˜‚๐—บ ๐—น๐—ฒ๐˜€๐˜€๐—ผ๐—ป๐˜€, you will ๐—ด๐—ผ ๐˜€๐˜๐—ฒ๐—ฝ-๐—ฏ๐˜†-๐˜€๐˜๐—ฒ๐—ฝ through the ๐˜๐—ต๐—ฒ๐—ผ๐—ฟ๐˜†, ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฑ๐—ฒ๐˜€๐—ถ๐—ด๐—ป, and ๐—ฐ๐—ผ๐—ฑ๐—ฒ to learn how to build a:

โ†’ ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜๐—ถ๐—บ๐—ฒ ๐˜€๐˜๐—ฟ๐—ฒ๐—ฎ๐—บ๐—ถ๐—ป๐—ด ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ (deployed on AWS) that uses Bytewax as the stream engine to listen to financial news, cleans & embeds the documents, and loads them to a vector DB

โ†’ ๐—ณ๐—ถ๐—ป๐—ฒ-๐˜๐˜‚๐—ป๐—ถ๐—ป๐—ด ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ (deployed as a serverless continuous training) that fine-tunes an LLM on financial data using QLoRA, monitors the experiments using an experiment tracker and saves the best model to a model registry

โ†’ ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ built in LangChain (deployed as a serverless RESTful API) that loads the fine-tuned LLM from the model registry and answers financial questions using RAG (leveraging the vector DB populated with financial news)

We will also show you how to ๐—ถ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ฎ๐˜๐—ฒ various ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐—ฟ๐—น๐—ฒ๐˜€๐˜€ ๐˜๐—ผ๐—ผ๐—น๐˜€, such as:

  • Comet ML as your ML Platform;
  • Qdrant as your vector DB;
  • Beam as your infrastructure.

๐—ช๐—ต๐—ผ ๐—ถ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—ณ๐—ผ๐—ฟ?

The series targets MLE, DE, DS, or SWE who want to learn to engineer LLM systems using LLMOps good principles.

๐—›๐—ผ๐˜„ ๐˜„๐—ถ๐—น๐—น ๐˜†๐—ผ๐˜‚ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป?

The series contains 4 hands-on video lessons and the open-source code you can access on GitHub.

๐—–๐˜‚๐—ฟ๐—ถ๐—ผ๐˜‚๐˜€?

Check out the 8 Medium lessons of the Hands-on LLMs course and start building your own LLMs system:

The Hands-on LLMs Course ๐Ÿ‘‰ https://medium.com/decodingml/hands-on-llms/home

This post is licensed under CC BY 4.0 by the author.