Post

๐Ÿ”‰ Meta's latest "CoPE" (Contextual Position Encoding)

Metaโ€™s latest โ€œCoPEโ€ paper isnโ€™t getting the attention it deserves!

The authors introduce a really innovative approach that utilizes context during positional encoding.

Hereโ€™s a quick summary:

  • โ›ณ Traditional positional encoding (PE) methods use token counts to derive position, limiting their ability to generalize to higher levels of abstraction, such as sentences.
  • โ›ณ CoPE overcomes this by integrating context with position addressing, making it possible to represent various levels of position abstraction simultaneously.
  • โ›ณ CoPE (Contextual Position Encoding) allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This enables more general position addressing, such as attending to the i-th particular word, noun, or sentence.
  • โ›ณ CoPE uses context vectors to determine which tokens to count, computing a gate value for each previous token relative to the current token. These gate values are aggregated to determine the relative position, which can take fractional values. Position embeddings are interpolated for these fractional values and added to key vectors for use in the attention operation.
  • โ›ณCoPE excels in tasks where popular PE methods fail, such as selective copying, counting, and the Flip-Flop task. It also improves perplexity on language modeling and coding tasks, demonstrating real-world applicability.

I honestly think that this is a very neat and functional research work that could help improve SoTA LLMs!

Link to the paper : https://arxiv.org/pdf/2405.18719

 CoPE over RoPE

Translate to Korean

Meta์˜ ์ตœ์‹  โ€œCoPEโ€ ๋…ผ๋ฌธ์€ ๋งˆ๋•…ํžˆ ๋ฐ›์•„์•ผ ํ•  ๊ด€์‹ฌ์„ ๋ฐ›์ง€ ๋ชปํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค! ์ €์ž๋Š” ์œ„์น˜ ์ธ์ฝ”๋”ฉ ์ค‘์— ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ •๋ง ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.

๋‹ค์Œ์€ ๊ฐ„๋‹จํ•œ ์š”์•ฝ์ž…๋‹ˆ๋‹ค.

  • โ›ณ ๊ธฐ์กด์˜ PE(์œ„์น˜ ์ธ์ฝ”๋”ฉ) ๋ฐฉ๋ฒ•์€ ํ† ํฐ ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ํŒŒ์ƒํ•˜๋ฏ€๋กœ ๋ฌธ์žฅ๊ณผ ๊ฐ™์€ ๋” ๋†’์€ ์ˆ˜์ค€์˜ ์ถ”์ƒํ™”๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ œํ•œํ•ฉ๋‹ˆ๋‹ค.
  • โ›ณ CoPE๋Š” ์ปจํ…์ŠคํŠธ๋ฅผ ์œ„์น˜ ์ฃผ์†Œ ์ง€์ •๊ณผ ํ†ตํ•ฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์˜ ์œ„์น˜ ์ถ”์ƒํ™”๋ฅผ ๋™์‹œ์— ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ์œผ๋กœ์จ ์ด๋ฅผ ๊ทน๋ณตํ•ฉ๋‹ˆ๋‹ค.
  • โ›ณ CoPE(Contextual Position Encoding)๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋ธ์— ์˜ํ•ด ๊ฒฐ์ •๋œ ํŠน์ • ํ† ํฐ์— ๋Œ€ํ•ด์„œ๋งŒ ์œ„์น˜๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ ์ปจํ…์ŠคํŠธ์— ๋”ฐ๋ผ ์œ„์น˜๋ฅผ ์กฐ๊ฑดํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด i๋ฒˆ์งธ ํŠน์ • ๋‹จ์–ด, ๋ช…์‚ฌ ๋˜๋Š” ๋ฌธ์žฅ์— ์ฃผ์˜๋ฅผ ๊ธฐ์šธ์ด๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋ณด๋‹ค ์ผ๋ฐ˜์ ์ธ ์œ„์น˜ ์ฃผ์†Œ ์ง€์ •์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
  • โ›ณ CoPE๋Š” ์ปจํ…์ŠคํŠธ ๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐํ•  ํ† ํฐ์„ ๊ฒฐ์ •ํ•˜๊ณ  ํ˜„์žฌ ํ† ํฐ์„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ ์ด์ „ ํ† ํฐ์— ๋Œ€ํ•œ ๊ฒŒ์ดํŠธ ๊ฐ’์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒŒ์ดํŠธ ๊ฐ’์€ ๋ถ„์ˆ˜ ๊ฐ’์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ๋Œ€์  ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ง‘๊ณ„๋ฉ๋‹ˆ๋‹ค. ์œ„์น˜ ์ž„๋ฒ ๋”ฉ์€ ์ด๋Ÿฌํ•œ ์†Œ์ˆ˜ ๊ฐ’์— ๋Œ€ํ•ด ๋ณด๊ฐ„๋˜๊ณ  ์–ดํ…์…˜ ์ž‘์—…์— ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ‚ค ๋ฒกํ„ฐ์— ์ถ”๊ฐ€๋ฉ๋‹ˆ๋‹ค.
  • โ›ณCoPE๋Š” ์„ ํƒ์  ๋ณต์‚ฌ, ์นด์šดํŒ… ๋ฐ Flip-Flop ์ž‘์—…๊ณผ ๊ฐ™์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” PE ๋ฐฉ๋ฒ•์ด ์‹คํŒจํ•˜๋Š” ์ž‘์—…์— ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์–ธ์–ด ๋ชจ๋ธ๋ง ๋ฐ ์ฝ”๋”ฉ ์ž‘์—…์˜ ๋ณต์žก์„ฑ์„ ๊ฐœ์„ ํ•˜์—ฌ ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์†”์งํžˆ ๋งํ•ด์„œ ์ด๊ฒƒ์€ SoTA LLM์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ๊น”๋”ํ•˜๊ณ  ๊ธฐ๋Šฅ์ ์ธ ์—ฐ๊ตฌ ์ž‘์—…์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค!

This post is licensed under CC BY 4.0 by the author.