Post

3D Gaussian Splatting vs. NeRFs. What is the difference? ๐Ÿค”

In the world of computer vision, 3D Gaussian Splatting and NeRFs are gaining traction.

Curiosity: But what sets them apart? Hereโ€™s a quick breakdown:

Comparison Overview

Retrieve: Key differences between NeRF and 3D Gaussian Splatting.

graph TB
    A[3D Scene Representation] --> B[NeRF]
    A --> C[3D Gaussian Splatting]
    
    B --> B1[Continuous Space]
    B --> B2[Neural Network]
    B --> B3[Point Sampling]
    
    C --> C1[Sparse Points]
    C --> C2[Direct Optimization]
    C --> C3[Gaussian Ellipsoids]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda

Detailed Comparison

AspectNeRF3D Gaussian Splatting
3D SpaceContinuousSparse points
Point GenerationSampling per imageStructure from Motion
RepresentationRGBA + viewing directionGaussians (shape, size, transparency, color)
Color DescriptionView-dependentSpherical harmonics
OptimizationNeural networkDirect optimization
OutputContinuous functionDiscrete ellipsoids
ApproachNeural, continuousGeometric, discrete

1. 3D Space Representation

Retrieve: Different approaches to representing 3D space.

NeRF:

  • Creates continuous 3D space
  • Samples points throughout scene
  • Per training image sampling

Gaussian Splatting:

  • Relies on sparse 3D points
  • Often uses Structure from Motion
  • More efficient representation

2. Point Description

Retrieve: How each method describes scene points.

NeRF:

  • RGBA color per point
  • Viewing direction dependency
  • Appearance varies with location and angle

Gaussian Splatting:

  • Complex 3D Gaussian forms
  • Varying shapes, sizes, transparency
  • Color described with spherical harmonics
  • More flexible representation

3. Optimization

Innovate: Different optimization strategies.

NeRF:

  • Neural network learns continuous function
  • Color and opacity functions
  • Implicit representation

Gaussian Splatting:

  • Direct optimization of ellipsoid properties
  • No neural network needed
  • Explicit discrete structure
  • Faster training

Architecture Comparison

graph LR
    A[Input Images] --> B[NeRF]
    A --> C[Gaussian Splatting]
    
    B --> D[Neural Network]
    D --> E[Continuous Function]
    
    C --> F[Direct Optimization]
    F --> G[Discrete Gaussians]
    
    style B fill:#fff3cd
    style C fill:#d4edda

When to Use Each

Retrieve: Choosing the right approach for your application.

Use CaseRecommendedReason
High QualityNeRFContinuous representation
Fast TrainingGaussian SplattingDirect optimization
Real-time RenderingGaussian SplattingEfficient discrete structure
ResearchNeRFNeural approach flexibility
ProductionGaussian SplattingFaster, more practical

Key Takeaways

Retrieve: NeRF offers a continuous, neural approach to 3D scene representation, while 3D Gaussian Splatting provides a simpler, directly optimized discrete structure with faster training and rendering.

Innovate: By understanding the trade-offs between continuous neural representations and discrete geometric approaches, you can choose the right method for your specific applicationโ€”whether prioritizing quality, speed, or practicality.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about 3D scene representation, retrieve insights from comparing NeRF and Gaussian Splatting, and innovate by applying the right approach to your 3D graphics or AR applications.

Next Steps:

  • Explore NeRF implementations
  • Try 3D Gaussian Splatting
  • Compare performance
  • Choose based on your needs

Information About 3D Gaussian Splatting

 3DGS Overview

Translate to Korean

์ปดํ“จํ„ฐ ๋น„์ „์˜ ์„ธ๊ณ„์—์„œ๋Š” 3D Gaussian Splatting ๋ฐ NeRF๊ฐ€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฌด์—‡์ด ๊ทธ๋“ค์„ ์ฐจ๋ณ„ํ™”ํ•ฉ๋‹ˆ๊นŒ? ๋‹ค์Œ์€ ๊ฐ„๋‹จํ•œ ๋ถ„์„์ž…๋‹ˆ๋‹ค.

๐Ÿ” 3D ๊ณต๊ฐ„ ํ‘œํ˜„:

  • NeRF: ๊ฐ ํ•™์Šต ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ์žฅ๋ฉด ์ „์ฒด์˜ ์ง€์ ์„ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ์—ฐ์† 3D ๊ณต๊ฐ„์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
  • ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ…(Gaussian Splatting): ์ข…์ข… ๋ชจ์…˜์˜ ๊ตฌ์กฐ(Structure from Motion)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋˜๋Š” ํฌ์†Œ 3D ํฌ์ธํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

๐ŸŽจ ํฌ์ธํŠธ ์„ค๋ช…:

  • ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ…: ๊ตฌํ˜• ๊ณ ์กฐํŒŒ๋กœ ์„ค๋ช…๋˜๋Š” ๋‹ค์–‘ํ•œ ๋ชจ์–‘, ํฌ๊ธฐ, ํˆฌ๋ช…๋„ ๋ฐ ์ƒ‰์ƒ์„ ๊ฐ€์ง„ ๊ฐ€์šฐ์‹œ์•ˆ์ด๋ผ๋Š” ๋ณต์žกํ•œ 3D ํ˜•ํƒœ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • NeRF: ๊ฐ ํฌ์ธํŠธ์— RGBA ์ƒ‰์ƒ๊ณผ ๋ณด๊ธฐ ๋ฐฉํ–ฅ์„ ํ• ๋‹นํ•˜๋ฉฐ, ๋ชจ์–‘์€ ์œ„์น˜ ๋ฐ ์‹œ์•ผ๊ฐ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค.

โš™๏ธ ์ตœ์ ํ™”:

  • NeRF: ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ‰์ƒ ๋ฐ ๋ถˆํˆฌ๋ช…๋„์— ๋Œ€ํ•œ ์—ฐ์† ํ•จ์ˆ˜๋ฅผ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
  • Gaussian Splatting: ์‹ ๊ฒฝ๋ง ์—†์ด ๊ฐ 3D ํƒ€์›์ฒด์˜ ์†์„ฑ์„ ์ง์ ‘ ์ตœ์ ํ™”ํ•˜์—ฌ ๊ฐœ๋ณ„ ํƒ€์›์ฒด ์„ธํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

๋ณธ์งˆ์ ์œผ๋กœ NeRF๋Š” ์—ฐ์†์ ์ธ ์‹ ๊ฒฝ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ˜๋ฉด, Gaussian Splatting์€ ๋” ๊ฐ„๋‹จํ•˜๊ณ  ์ง์ ‘ ์ตœ์ ํ™”๋œ ์ด์‚ฐ ๊ตฌ์กฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

3D ๊ทธ๋ž˜ํ”ฝ๊ณผ AR ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์–ด๋–ค ์ ‘๊ทผ ๋ฐฉ์‹์ด ๋” ํฅ๋ฏธ๋กญ๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹ญ๋‹ˆ๊นŒ? ๋Œ“๊ธ€๋กœ ์ƒ๊ฐ์„ ๊ณต์œ ํ•˜์„ธ์š”! ๐Ÿ’ฌ

This post is licensed under CC BY 4.0 by the author.