Post

Reinforcing Reinforcement Learning Terms, Policies, Models and Top 40 Libraries ๐Ÿ“š

Reinforcement Learning: Terms, Policies, Models, and Top 40 Libraries

Curiosity: What is reinforcement learning? How do agents learn to make better decisions through interaction with environments?

Reinforcement Learning (RL) is a type of machine learning where an agent interacts with an environment, receives feedback, and makes better decisions over time through trial and error.

RL Overview

Retrieve: Understanding reinforcement learning fundamentals.

graph LR
    A[Agent] --> B[Action]
    B --> C[Environment]
    C --> D[State]
    C --> E[Reward]
    D --> A
    E --> A
    A --> F[Policy Update]
    F --> A
    
    style A fill:#e1f5ff
    style C fill:#fff3cd
    style E fill:#d4edda

Key Terms in RL

Retrieve: Essential RL terminology.

TermSymbolDescriptionPurpose
Environment-System the agent interacts withโฌ†๏ธ Learning context
Agent-Autonomous entityโฌ†๏ธ Decision maker
Feedback-Rewards or penaltiesโฌ†๏ธ Learning signal
StateSCurrent situationโฌ†๏ธ Context
Policyฯ€Strategy for actionsโฌ†๏ธ Decision rule
ValueVExpected long-term returnโฌ†๏ธ State evaluation
Q-ValueQLong-term return of actionโฌ†๏ธ Action evaluation
Model-Environment simulationโฌ†๏ธ Planning

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Model/Policy Classifications

Retrieve: Different approaches to RL.

Model-Free vs Model-Based:

TypeDescriptionUse Case
Model-BasedUses environment modelโฌ†๏ธ When model available
Model-FreeTrial-and-error learningโฌ†๏ธ When model unknown

On-Policy vs Off-Policy:

TypeDescriptionLearning Source
On-PolicyLearns from current policyโฌ†๏ธ Current actions
Off-PolicyLearns from different policyโฌ†๏ธ Other policy data

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Well-Known RL Models

Retrieve: Popular RL algorithms and their characteristics.

ModelTypeDescriptionAdvantage
Q-LearningModel-freeQ-table for best actionsโฌ†๏ธ Simple, effective
SARSAModel-basedUpdates based on next state-actionโฌ†๏ธ On-policy learning
DQNModel-freeDeep networks for Q-functionโฌ†๏ธ Handles large states
DDPGModel-freeDeep deterministic policyโฌ†๏ธ Continuous actions

DDPG Advantage: Handles complex environments and large state spaces better than traditional RL algorithms.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

RL Applications

Innovate: Diverse applications of reinforcement learning.

CategoryApplicationsImpact
RoboticsRobot control, manipulationโฌ†๏ธ Automation
TransportationAutonomous vehicles, traffic controlโฌ†๏ธ Safety, efficiency
HealthcareTreatment optimizationโฌ†๏ธ Patient outcomes
FinanceTrading, portfolio managementโฌ†๏ธ Returns
GamingGame AI, strategyโฌ†๏ธ Entertainment
EnergySmart grids, managementโฌ†๏ธ Efficiency
BusinessMarketing, recommendationsโฌ†๏ธ Revenue
TechnologyNLP, cybersecurityโฌ†๏ธ Capabilities
IndustryManufacturing, automationโฌ†๏ธ Productivity
ResearchSpace exploration, agricultureโฌ†๏ธ Innovation

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

Top 40 Python RL Libraries

Retrieve: Comprehensive list of reinforcement learning libraries.

LibraryFrameworkFocusUse Case
GymOpenAIEnvironmentsโฌ†๏ธ Standard environments
Stable-BaselinesTensorFlow/PyTorchAlgorithmsโฌ†๏ธ Easy implementation
Ray RLlibRayDistributed RLโฌ†๏ธ Scalability
TF-AgentsTensorFlowAgentsโฌ†๏ธ TensorFlow integration
AcmeJAXResearchโฌ†๏ธ Advanced research
TianshouPyTorchAlgorithmsโฌ†๏ธ PyTorch ecosystem
CleanRLPyTorchClean codeโฌ†๏ธ Learning
PettingZooMulti-agentMulti-agent RLโฌ†๏ธ Multi-agent
DopamineTensorFlowResearchโฌ†๏ธ Google research
MushroomRLPythonAlgorithmsโฌ†๏ธ Research

Complete List (40 libraries): Gym, Baselines, Dopamine, TensorLayer, FinRL, Stable-Baselines, ReAgent, Acme, PARL, TF-Agents, TensorFlow, PyTorchRL, Keras-RL, Garage, TensorForce, RLax, Coach, RFRL, Rliable, ViZDoom, Ray RLlib, ReAgent (Horizon), ChainerRL, MushroomRL, TRFL, CleanRL, Tianshou, MAgent, rl-baselines3-zoo, PettingZoo, RLlib, RoboRL, H-baselines, DI-engine, and more.

Key Takeaways

Retrieve: Reinforcement learning enables agents to learn through environment interaction, with various algorithms (Q-Learning, DQN, DDPG) and applications across robotics, gaming, finance, and more.

Innovate: By leveraging Python RL libraries like Gym, Stable-Baselines, and Ray RLlib, you can build RL systems for diverse applications, from game AI to autonomous vehicles, using proven algorithms and frameworks.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about reinforcement learning, retrieve insights from RL terms, models, and libraries, and innovate by building RL applications that solve real-world problems.

Next Steps:

  • Choose an RL library
  • Start with simple environments
  • Implement basic algorithms
  • Build your RL application

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

โญ† ๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐Ÿ๐จ๐ซ ๐…๐ซ๐ž๐ž ๐Ž๐ง๐ฅ๐ข๐ง๐ž ๐‡๐š๐ง๐๐ฌ-๐จ๐ง ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐œ๐ž ๐“๐ฎ๐ญ๐จ๐ซ๐ข๐š๐ฅ (๐„๐ง๐ ๐ญ๐จ ๐„๐ง๐ ๐๐ซ๐จ๐ฃ๐ž๐œ๐ญ): https://www.maryammiradi.com/sonar

 Reinforcement Learning Python Libraries

Translate to Korean

RL์€ ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ ์ž‘์šฉํ•˜๊ณ , ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›๊ณ , ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋” ๋‚˜์€ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ธฐ๊ณ„ ํ•™์Šต์˜ ํ•œ ์œ ํ˜•์ž…๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ“ RL์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์šฉ์–ด:

  • โŒ˜ ํ™˜๊ฒฝ: ์—์ด์ „ํŠธ๊ฐ€ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์‹œ์Šคํ…œ ๋˜๋Š” ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค.

  • โŒ˜ ์—์ด์ „ํŠธ(Agent): ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ ์ž‘์šฉํ•˜๋Š” ์ž์œจ์ ์ธ ๊ฐœ์ฒด๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

  • โŒ˜ ํ”ผ๋“œ๋ฐฑ: ์—์ด์ „ํŠธ๊ฐ€ ์กฐ์น˜(๋ณด์ƒ ๋˜๋Š” ํŽ˜๋„ํ‹ฐ)๋ฅผ ์ทจํ•œ ํ›„ ํ™˜๊ฒฝ์—์„œ ์—์ด์ „ํŠธ์—๊ฒŒ ์ œ๊ณตํ•˜๋Š” ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

  • โŒ˜ ์ƒํƒœ(S): ํ™˜๊ฒฝ์—์„œ ๋ฐ˜ํ™˜๋˜๋Š” ํ˜„์žฌ ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค.

  • โŒ˜ ์ •์ฑ…(ฯ€): ์—์ด์ „ํŠธ๊ฐ€ ๋‹ค์Œ ํ–‰๋™์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” ์ „๋žต์ž…๋‹ˆ๋‹ค.

  • โŒ˜ ๊ฐ€์น˜ (V) : ์˜ˆ์ƒ๋˜๋Š” ์žฅ๊ธฐ ์ˆ˜์ต

  • โŒ˜ Q-Value (Q): ์ฃผ์–ด์ง„ ํ˜„์žฌ ํ–‰๋™์˜ ์žฅ๊ธฐ ์ˆ˜์ต

  • โŒ˜ ๋ชจ๋ธ: ํ™˜๊ฒฝ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ“– RL์˜ ๋ชจ๋ธ/์ •์ฑ…:

๋ชจ๋ธ ํ”„๋ฆฌ(Model-Free) vs ๋ชจ๋ธ ๊ธฐ๋ฐ˜(Model-Based):

  • เน ์ƒํƒœ ๊ณต๊ฐ„๊ณผ ์•ก์…˜ ๊ณต๊ฐ„์ด ์ปค์ง€๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ž‘ํ’ˆ
  • เน Model-free ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€์‹์„ ์—…๋ฐ์ดํŠธํ•˜๊ธฐ ์œ„ํ•ด ์‹œํ–‰์ฐฉ์˜ค์— ์˜์กดํ•ฉ๋‹ˆ๋‹ค.

์˜จ-ํด๋ฆฌ์‹œ(On-Policy) vs ์˜คํ”„-ํด๋ฆฌ์‹œ(Off-Policy):

  • เน On-policy ์—์ด์ „ํŠธ๋Š” ํ˜„์žฌ ์ •์ฑ…์—์„œ ํŒŒ์ƒ๋œ ํ˜„์žฌ ์ž‘์—…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
  • เน Off-policy ์นด์šดํ„ฐ ํŒŒํŠธ๋Š” ๋‹ค๋ฅธ ์ •์ฑ…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿค– ์ž˜ ์•Œ๋ ค์ง„ RL ๋ชจ๋ธ:

  • โžŠ Q-๋Ÿฌ๋‹:

Q-ํ…Œ์ด๋ธ”์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ์— ๋Œ€ํ•œ ์ตœ์ƒ์˜ ์ž‘์—…์„ ์ €์žฅํ•˜๋Š” ๋ชจ๋ธ ์—†๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.

  • โž‹ ๊ตญ๊ฐ€-ํ–‰๋™-๋ณด์ƒ-๊ตญ๊ฐ€-ํ–‰๋™(SARSA):

๋ณด์ƒ ๋ฐ ๋‹ค์Œ ์ƒํƒœ-ํ–‰๋™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒํƒœ-ํ–‰๋™ ๊ฐ’์„ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.

  • โžŒ ๋”ฅ Q ๋„คํŠธ์›Œํฌ(DQN):

์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ Q-function์„ ๊ทผ์‚ฌํ™”ํ•˜๋Š” ๋ชจ๋ธ ์—†๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค.

  • โž ์‹ฌ์ธต ๊ฒฐ์ •๋ก ์  ์ •์ฑ… ๊ทธ๋ž˜๋””์–ธํŠธ(DDPG):

DDPG๋Š” ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ์กด RL ์•Œ๊ณ ๋ฆฌ์ฆ˜๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ํ™˜๊ฒฝ๊ณผ ๋Œ€๊ทœ๋ชจ ์ƒํƒœ ๊ณต๊ฐ„์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”

๐Ÿ› ๏ธ ๋‹ค์Œ์€ ๊ฐ•ํ™” ํ•™์Šต(RL)์˜ ๋ช‡ ๊ฐ€์ง€ ์‘์šฉ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค.

  • ยป ๋กœ๋ณดํ‹ฑ์Šค
  • ยป ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰
  • ยป ํ—ฌ์Šค์ผ€์–ด
  • ยป ๊ธˆ์œต
  • ยป ๋…ธ๋ฆ„
  • ยป ์—๋„ˆ์ง€ ๊ด€๋ฆฌ
  • ยป ๋งˆ์ผ€ํŒ… ๋ฐ ๊ด‘๊ณ 
  • ยป ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
  • ยป ์ œ์กฐ์—…
  • ยป ์Šค๋งˆํŠธ ๊ทธ๋ฆฌ๋“œ
  • ยป ๊ณต๊ธ‰๋ง ์ตœ์ ํ™”
  • ยป ์ถ”์ฒœ ์‹œ์Šคํ…œ
  • ยป ๊ฐœ์ธํ™” ์‹œ์Šคํ…œ
  • ยป ๊ตํ†ต ์‹ ํ˜ธ ์ œ์–ด
  • ยป ๊ต์œก ๋ฐ ํ›ˆ๋ จ
  • ยป ๋†์—…
  • ยป ์‚ฐ์—… ์ž๋™ํ™”
  • ยป ์šฐ์ฃผ ํƒ์‚ฌ
  • ยป ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ
  • ยป ๊ฐ€์ƒ ๋น„์„œ
This post is licensed under CC BY 4.0 by the author.