Post

πŸ‘šπŸ‘š ViViD Diffusion Virtual Try-ON πŸ‘šπŸ‘š

ViViD Diffusion: Virtual Try-On with Diffusion Models

Curiosity: How can we create realistic virtual try-on videos? What makes ViViD’s approach to video virtual try-on (VTON) innovative?

Alibaba announces ViViD, a novel framework employing powerful diffusion models to tackle the virtual try-on task.

⚠️ Note: Code announced, not released yet 😒

Highlights

Retrieve: ViViD’s key features.

FeatureDescriptionImpact
Novel ArchitectureAddresses video VTON⬆️ Innovation
Diffusion ModelsSynthesizes HQ try-on videos⬆️ Quality
Pose + TemporalModules for temporal consistency⬆️ Realism
Attention FusionNew mechanism for garments⬆️ Accuracy
Dataset9,700 pairs of HQ garment-clips⬆️ Training data

ViViD Architecture

Innovate: Framework overview.

graph TB
    A[Input Video] --> B[Pose Module]
    A --> C[Garment Image]
    B --> D[Temporal Module]
    C --> E[Attention Fusion]
    D --> F[Diffusion Model]
    E --> F
    F --> G[HQ Try-On Video]
    
    style A fill:#e1f5ff
    style F fill:#fff3cd
    style G fill:#d4edda

Key Innovations

Retrieve: Technical breakthroughs.

1. Video VTON Architecture:

  • Novel approach to video virtual try-on
  • Handles temporal consistency

2. Diffusion Models:

  • Synthesizes high-quality try-on videos
  • Better than previous methods

3. Pose + Temporal Modules:

  • Ensures temporal consistency
  • Maintains realistic motion

4. Attention Fusion:

  • New mechanism for garment integration
  • Better garment-person alignment

5. Multi-Category Dataset:

  • 9,700 pairs of high-quality garment-clips
  • Comprehensive training data

Resources

Retrieve: Available materials.

Resources:

Paper Authors: Zixun Fang, Wei Zhai, Aimin Su, Hongliang Song, Kai Zhu, Mao Wang, Yu Chen, Zhiheng Liu, Yang Cao, Zheng-Jun Zha (University of Science and Technology of China, Alibaba Group)

Key Takeaways

Retrieve: ViViD is a novel framework using diffusion models for video virtual try-on, with innovations in architecture, temporal consistency, and garment fusion.

Innovate: By combining diffusion models with pose and temporal modules, you can create high-quality virtual try-on videos with realistic temporal consistency and accurate garment integration.

Curiosity β†’ Retrieve β†’ Innovation: Start with curiosity about virtual try-on, retrieve insights from ViViD’s diffusion-based approach, and innovate by applying similar techniques to your video generation projects.

Next Steps:

  • Read the full paper
  • Check project page
  • Wait for code release
  • Experiment with diffusion VTON
Translate to Korean

πŸ‘‰ Alibaba λŠ” 가상 μ²΄ν—˜ μž‘μ—…μ„ μ²˜λ¦¬ν•˜κΈ° μœ„ν•΄ κ°•λ ₯ν•œ ν™•μ‚° λͺ¨λΈμ„ μ‚¬μš©ν•˜λŠ” μƒˆλ‘œμš΄ ν”„λ ˆμž„μ›Œν¬μΈ ViViDλ₯Ό λ°œν‘œν–ˆμŠ΅λ‹ˆλ‹€.

μ½”λ“œ λ°œν‘œ, μ•„μ§πŸ˜’ κ³΅κ°œλ˜μ§€ μ•ŠμŒ

ν•˜μ΄λΌμ΄νŠΈ:

  • βœ…λΉ„λ””μ˜€ VTON을 λ‹€λ£¨λŠ” μƒˆλ‘œμš΄ μ•„ν‚€ν…μ²˜
  • βœ…HQ μ‹œμ°© λΉ„λ””μ˜€λ₯Ό ν•©μ„±ν•˜κΈ° μœ„ν•œ ν™•μ‚° λͺ¨λΈ
  • βœ…μ‹œκ°„μ  일관성을 μœ„ν•œ 포즈 + μ‹œκ°„μ  λͺ¨λ“ˆ
  • βœ…μƒˆλ‘œμš΄ μ£Όλͺ© μœ„μ—…. μ˜λ³΅μ„ μœ„ν•œ μœ΅ν•© 기계μž₯치
  • βœ…λ‹€μ€‘ λ²”μ£Ό 데이터 μ„ΈνŠΈ: 9,700케레의 HQ 의λ₯˜ 클립
This post is licensed under CC BY 4.0 by the author.