Post

Is this the architecture of OpenAI GPT-4o?

Uni-MoE: Unified Multimodal LLM Architecture (GPT-4o-like)

Curiosity: How can we build a unified model that handles audio, speech, image, text, and video? What architecture enables efficient multimodal learning?

Uni-MoE proposes an MoE-based unified Multimodal Large Language Model (MLLM) that can handle audio, speech, image, text, and video. ๐Ÿ‘‚๐Ÿ‘„๐Ÿ‘€๐Ÿ’ฌ๐ŸŽฅ This architecture may be similar to GPT-4oโ€™s approach.

Uni-MoE Overview

Retrieve: Understanding the unified multimodal architecture.

Uni-MoE is a native multimodal Mixture of Experts (MoE) architecture with a three-phase training strategy:

  1. Cross-modality alignment
  2. Expert activation
  3. Fine-tuning with Low-Rank Adaptation (LoRA)

Architecture Highlights

graph TB
    A[Uni-MoE Architecture] --> B[Modality-Specific Encoders]
    A --> C[Connectors]
    A --> D[MoE Layers]
    
    B --> B1[Audio Encoder]
    B --> B2[Speech Encoder]
    B --> B3[Image Encoder]
    B --> B4[Text Encoder]
    B --> B5[Video Encoder]
    
    C --> C1[Cross-Modality Alignment]
    D --> D1[Sparse Activation]
    D --> D2[Expert Routing]
    
    C1 --> E[Unified Representation]
    D1 --> E
    D2 --> E
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style E fill:#d4edda

Key Features

FeatureDescriptionBenefit
Unified MultimodalHandles 5 modalitiesโฌ†๏ธ Versatility
MoE ArchitectureSparse expert activationโฌ†๏ธ Efficiency
Modality-Specific EncodersSpecialized processingโฌ†๏ธ Quality
ConnectorsCross-modality alignmentโฌ†๏ธ Integration
LoRA Fine-tuningEfficient adaptationโฌ‡๏ธ Training cost

Three-Phase Training Strategy

Retrieve: Systematic training approach.

Phase 1: Cross-Modality Alignment

  • Train connectors for different modalities
  • Align representations across modalities
  • Establish unified space

Phase 2: Expert Activation

  • Modality-specific expert training
  • Cross-modality instruction data
  • Expert specialization

Phase 3: LoRA Fine-tuning

  • Fine-tuning with LoRA
  • Mixed multimodal data
  • Efficient adaptation

Training Pipeline:

graph LR
    A[Phase 1:<br/>Cross-Modality Alignment] --> B[Phase 2:<br/>Expert Activation]
    B --> C[Phase 3:<br/>LoRA Fine-tuning]
    C --> D[Uni-MoE Model]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda
    style D fill:#f8d7da

Performance Results

Innovate: Uni-MoEโ€™s impressive achievements.

Results:

  • โœ… Matches or outperforms other MLLMs on 10 tested vision and audio tasks
  • โœ… Outperforms existing unified multimodal models on comprehensive benchmarks
  • โœ… Efficient training and inference through sparse MoE
  • โœ… Unified representation across modalities

Architecture Comparison

AspectTraditional MLLMsUni-MoEAdvantage
ModalitiesLimited5 modalitiesโฌ†๏ธ More
ArchitectureDenseSparse MoEโฌ†๏ธ Efficiency
TrainingSingle-phaseThree-phaseโฌ†๏ธ Better
EfficiencyStandardOptimizedโฌ†๏ธ Faster

Why This Matters

Retrieve: Uni-MoE demonstrates the potential architecture for GPT-4o-like unified multimodal models.

Implications:

  • Unified models can handle multiple modalities
  • MoE enables efficient scaling
  • Three-phase training optimizes learning
  • LoRA enables efficient fine-tuning

Resources

Resources:

Key Takeaways

Retrieve: Uni-MoE proposes a unified multimodal LLM architecture using MoE that handles audio, speech, image, text, and video through a three-phase training strategy.

Innovate: By using modality-specific encoders, connectors, and sparse MoE architecture, Uni-MoE achieves efficient training and inference while matching or outperforming other MLLMs, potentially revealing insights into GPT-4oโ€™s architecture.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about unified multimodal architectures, retrieve insights from Uni-MoEโ€™s approach, and innovate by applying similar techniques to your multimodal applications.

 GPT4o Architecture

Translate to Korean

Uni-MoE๋Š” ์˜ค๋””์˜ค, ์Œ์„ฑ, ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ ๋ฐ ๋น„๋””์˜ค๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” MoE ๊ธฐ๋ฐ˜ ํ†ตํ•ฉ MLLM(Multimodal Large Language Model)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ‘‚๐Ÿ‘„๐Ÿ‘€๐Ÿ’ฌ๐ŸŽฅ

Uni-MoE๋Š” ๊ธฐ๋ณธ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ MoE(Mixture of Experts) ์•„ํ‚คํ…์ฒ˜๋กœ, ๊ต์ฐจ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ์ •๋ ฌ, ์ „๋ฌธ๊ฐ€ ํ™œ์„ฑํ™” ๋ฐ LoRA(Low-Rank Adaptation)๋ฅผ ํ†ตํ•œ ๋ฏธ์„ธ ์กฐ์ •์„ ํฌํ•จํ•˜๋Š” 3๋‹จ๊ณ„ ๊ต์œก ์ „๋žต์„ ๊ฐ–์ถ”๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿค”

TL์ž…๋‹ˆ๋‹ค. ๋ฐ•์‚ฌ:

  • ๐Ÿš€ Uni-MoE๋Š” ํ†ตํ•ฉ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ‘œํ˜„์„ ์œ„ํ•ด ์ปค๋„ฅํ„ฐ๊ฐ€ ์žˆ๋Š” ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ณ„ ์—”์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ๐Ÿ’ก ํšจ์œจ์ ์ธ ํ•™์Šต ๋ฐ ์ถ”๋ก ์„ ์œ„ํ•ด ํฌ์†Œ MoE ์•„ํ‚คํ…์ฒ˜ ํ™œ์šฉ
  • ๐Ÿง‘ ๐Ÿซ 3๋‹จ๊ณ„ ๊ต์œก: 1) ๋‹ค์–‘ํ•œ ์–‘์‹์— ๋Œ€ํ•œ ์ปค๋„ฅํ„ฐ ํ•™์Šต 2) ๊ต์ฐจ ์–‘์‹ ์ง€์นจ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์–‘์‹๋ณ„ ์ „๋ฌธ๊ฐ€ ๊ต์œก. 3) ํ˜ผํ•ฉ ๋‹ค์ค‘ ๋ชจ๋“œ ๋ฐ์ดํ„ฐ์—์„œ LoRA๋กœ ๋ฏธ์„ธ ์กฐ์ •.
  • ๐Ÿ“Š Uni-MoE๋Š” 10๊ฐœ์˜ ํ…Œ์ŠคํŠธ๋œ ๋น„์ „ ๋ฐ ์˜ค๋””์˜ค ์ž‘์—…์—์„œ ๋‹ค๋ฅธ MLLM๊ณผ ์ผ์น˜ํ•˜๊ฑฐ๋‚˜ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•ฉ๋‹ˆ๋‹ค.
  • ๐Ÿ† ํฌ๊ด„์ ์ธ ๋ฒค์น˜๋งˆํฌ์—์„œ ๊ธฐ์กด ํ†ตํ•ฉ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ชจ๋ธ์„ ๋Šฅ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
This post is licensed under CC BY 4.0 by the author.