Post

๐—จ๐—ป๐˜ƒ๐—ฒ๐—ถ๐—น๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ง๐—ผ๐—ฝ ๐Ÿญ๐Ÿฎ ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—”๐—น๐—ด๐—ผ๐—ฟ๐—ถ๐˜๐—ต๐—บ๐˜€ !

  • ๐—Ÿ๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป: A staple for any machine learning enthusiast, linear regression is like drawing a straight line through data points on a graph to predict future values.

  • ๐—Ÿ๐—ผ๐—ด๐—ถ๐˜€๐˜๐—ถ๐—ฐ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป: This algorithm helps us categorise data into discrete outcomes โ€” itโ€™s all about classification, like sorting fruits into apples and oranges.

  • ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—ง๐—ฟ๐—ฒ๐—ฒ: Imagine playing a game of intelligent โ€˜20 Questionsโ€™ with your data to make decisions and predictions โ€” thatโ€™s your decision tree algorithm.

  • ๐—ฅ๐—ฎ๐—ป๐—ฑ๐—ผ๐—บ ๐—™๐—ผ๐—ฟ๐—ฒ๐˜€๐˜: By combining multiple decision trees, this algorithm creates a โ€˜forestโ€™ that outperforms any single โ€˜treeโ€™ in making more accurate guesses.

  • ๐—ฆ๐˜‚๐—ฝ๐—ฝ๐—ผ๐—ฟ๐˜ ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ๐˜€ (๐—ฆ๐—ฉ๐— ๐˜€): SVMs are the strategists of the algorithm world, finding the best boundaries that separate groups of data points.

  • ๐—ž-๐—ก๐—ฒ๐—ฎ๐—ฟ๐—ฒ๐˜€๐˜ ๐—ก๐—ฒ๐—ถ๐—ด๐—ต๐—ฏ๐—ผ๐˜‚๐—ฟ๐˜€: Just like looking for the closest friends, this algorithm looks at the โ€˜nearest neighboursโ€™ to predict group belonging.

  • ๐—š๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ฒ๐—ป๐˜ ๐—•๐—ผ๐—ผ๐˜€๐˜๐—ถ๐—ป๐—ด ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ๐˜€: Step by step, this algorithm improves decision-making to minimise mistakes โ€” itโ€™s all about getting smarter over time.

  • ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: Delving into the complex neural networks that mimic the human brain, deep learning excels at recognizing patterns and insights from data like images and sounds.

  • ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”): PCA simplifies data by focusing on the most important parts, making it easier to analyse and visualise.

  • ๐—ก๐—ฎ๐—ถ๐˜ƒ๐—ฒ ๐—•๐—ฎ๐˜†๐—ฒ๐˜€: Based on probability and assumptions of independence, this algorithm is a quick and dirty way to make predictions.

  • ๐—–๐—น๐˜‚๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—”๐—น๐—ด๐—ผ๐—ฟ๐—ถ๐˜๐—ต๐—บ: Ever tried grouping similar things together without being told what the groups should be? Thatโ€™s clustering for you.

  • ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ: The backbone of deep learning, neural networks are inspired by our brainโ€™s interconnectivity and are crucial for complex problem-solving.

๐—จ๐—ป๐—น๐—ผ๐—ฐ๐—ธ ๐— ๐—ผ๐—ฟ๐—ฒ ๐—”๐—œ ๐—š๐—ผ๐—ผ๐—ฑ๐—ถ๐—ฒ๐˜€! If this content helps, repost this โ™ป๏ธ to your network and follow Dirk Zee.

 3 Day RAG Roadmap

Translate to Korean
  • ์„ ํ˜• ํšŒ๊ท€: ๋ชจ๋“  ๊ธฐ๊ณ„ ํ•™์Šต ์• ํ˜ธ๊ฐ€์˜ ํ•„์ˆ˜ํ’ˆ์ธ ์„ ํ˜• ํšŒ๊ท€๋Š” ๊ทธ๋ž˜ํ”„์˜ ๋ฐ์ดํ„ฐ ์š”์†Œ๋ฅผ ํ†ตํ•ด ์ง์„ ์„ ๊ทธ๋ ค ๋ฏธ๋ž˜ ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€: ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ์—ฐ์†์ ์ธ ๊ฒฐ๊ณผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋ฉฐ, ๊ณผ์ผ์„ ์‚ฌ๊ณผ์™€ ์˜ค๋ Œ์ง€๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋ถ„๋ฅ˜์— ๊ด€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

  • ์˜์‚ฌ ๊ฒฐ์ • ํŠธ๋ฆฌ(Decision Tree): ์˜์‚ฌ ๊ฒฐ์ • ํŠธ๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์€ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์ง€๋Šฅ์ ์ธ โ€˜20๊ฐ€์ง€ ์งˆ๋ฌธโ€™ ๊ฒŒ์ž„์„ ํ•œ๋‹ค๊ณ  ์ƒ์ƒํ•ด ๋ณด์‹ญ์‹œ์˜ค.

  • ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(Random Forest): ์—ฌ๋Ÿฌ ์˜์‚ฌ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ธก์„ ํ•˜๋Š” ๋ฐ ์žˆ์–ด ๋‹จ์ผ โ€˜ํŠธ๋ฆฌโ€™๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋Š” โ€˜ํฌ๋ ˆ์ŠคํŠธโ€™๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

  • SVM(Support Vector Machine): SVM์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ธ๊ณ„์˜ ์ „๋žต๊ฐ€๋กœ์„œ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๊ทธ๋ฃน์„ ๊ตฌ๋ถ„ํ•˜๋Š” ์ตœ์ƒ์˜ ๊ฒฝ๊ณ„๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค.

  • K-Nearest Neighbours: ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์นœ๊ตฌ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ โ€˜๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ด์›ƒโ€™์„ ๋ณด๊ณ  ๊ทธ๋ฃน ์†Œ์†์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.

  • ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ๋จธ์‹ (Gradient Boosting Machines): ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์˜์‚ฌ ๊ฒฐ์ •์„ ๋‹จ๊ณ„๋ณ„๋กœ ๊ฐœ์„ ํ•˜๋ฉฐ, ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋” ๋˜‘๋˜‘ํ•ด์ง€๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

  • ๋”ฅ ๋Ÿฌ๋‹: ์ธ๊ฐ„์˜ ๋‡Œ๋ฅผ ๋ชจ๋ฐฉํ•œ ๋ณต์žกํ•œ ์‹ ๊ฒฝ๋ง์„ ํƒ๊ตฌํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹์€ ์ด๋ฏธ์ง€ ๋ฐ ์†Œ๋ฆฌ์™€ ๊ฐ™์€ ๋ฐ์ดํ„ฐ์—์„œ ํŒจํ„ด๊ณผ ํ†ต์ฐฐ๋ ฅ์„ ์ธ์‹ํ•˜๋Š” ๋ฐ ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค.

  • ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA): PCA๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์— ์ง‘์ค‘ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹จ์ˆœํ™”ํ•˜์—ฌ ๋ถ„์„ ๋ฐ ์‹œ๊ฐํ™”๋ฅผ ๋” ์‰ฝ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

  • ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ(Naive Bayes): ํ™•๋ฅ ๊ณผ ๋…๋ฆฝ์„ฑ ๊ฐ€์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋น ๋ฅด๊ณ  ์ง€์ €๋ถ„ํ•œ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

  • ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜ : ๊ทธ๋ฃน์ด ๋ฌด์—‡์ด์–ด์•ผํ•˜๋Š”์ง€ ์•Œ๋ ค์ฃผ์ง€ ์•Š๊ณ  ๋น„์Šทํ•œ ๊ฒƒ๋“ค์„ ํ•จ๊ป˜ ๊ทธ๋ฃนํ™”ํ•˜๋ ค๊ณ  ์‹œ๋„ํ•œ ์ ์ด ์žˆ์Šต๋‹ˆ๊นŒ? ์ด๊ฒƒ์ด ๋ฐ”๋กœ ํด๋Ÿฌ์Šคํ„ฐ๋ง์ž…๋‹ˆ๋‹ค.

  • ์‹ ๊ฒฝ๋ง: ๋”ฅ ๋Ÿฌ๋‹์˜ ์ค‘์ถ”์ธ ์‹ ๊ฒฝ๋ง์€ ์šฐ๋ฆฌ ๋‡Œ์˜ ์ƒํ˜ธ ์—ฐ๊ฒฐ์„ฑ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•˜์œผ๋ฉฐ ๋ณต์žกํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

This post is licensed under CC BY 4.0 by the author.