Post

Tools for Building LLM Applications

Tools for Building LLM Applications: A Comprehensive Guide

Curiosity: What tools and frameworks are essential for building LLM applications? How do we navigate the rich landscape of available technologies?

The LLM application landscape is rich with diverse tools and technologies, each serving different needs and stages of development. Finding the right tools is crucial for building successful applications.

πŸ“– Comprehensive Guide: https://github.com/aishwaryanr/awesome-generative-ai-guide/blob/main/free_courses/Applied_LLMs_Mastery_2024/week5_tools_for_LLM_apps.md

Tool Categories Overview

graph TB
    A[LLM Application Tools] --> B[Input Processing]
    A --> C[LLM Development]
    A --> D[Output Tools]
    A --> E[Application Tools]
    
    B --> B1[Data Pipelines]
    B --> B2[Vector Databases]
    
    C --> C1[LLM Providers]
    C --> C2[Orchestration]
    C --> C3[Fine-tuning]
    
    D --> D1[Evaluation]
    D --> D2[Post-processing]
    
    E --> E1[Hosting]
    E --> E2[Monitoring]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style C fill:#d4edda
    style D fill:#f8d7da
    style E fill:#e7d4f8

Four Main Tool Categories

CategoryPurposeKey ToolsUse Case
Input ProcessingData ingestion & preparationPipelines, Vector DBsRAG, Data prep
LLM DevelopmentModel interaction & trainingProviders, OrchestrationDevelopment, Training
Output ToolsPost-processing & evaluationEvaluation frameworksQuality assessment
Application ToolsHosting & monitoringDeployment, MonitoringProduction

1. Input Processing Tools

Retrieve: Handle data ingestion and prepare inputs for LLM applications.

Purpose: Process and prepare data for LLM consumption

Components:

  • Data Pipelines: ETL, data transformation
  • Vector Databases: Embedding storage and retrieval
  • Data Preprocessing: Cleaning, formatting

Tools:

  • Vector DBs: Pinecone, Weaviate, Chroma, Qdrant
  • Data Pipelines: Apache Airflow, Prefect
  • ETL Tools: dbt, Apache Spark

Use Cases:

  • RAG applications
  • Data preparation
  • Embedding storage
  • Document processing

Architecture:

graph LR
    A[Raw Data] --> B[Data Pipeline]
    B --> C[Processing]
    C --> D[Vector DB]
    D --> E[LLM Application]
    
    style A fill:#e1f5ff
    style B fill:#fff3cd
    style D fill:#d4edda
    style E fill:#f8d7da

2. LLM Development Tools

Innovate: Tools for interacting with, fine-tuning, and orchestrating LLMs.

Purpose: Develop and interact with Large Language Models

Subcategories:

SubcategoryToolsPurpose
LLM ProvidersOpenAI, Anthropic, CohereModel access
OrchestrationLangChain, LlamaIndexWorkflow management
Fine-tuningHugging Face, LLaMA-FactoryModel customization
ExperimentationWeights & Biases, MLflowExperiment tracking

LLM Providers:

  • OpenAI: GPT-4, GPT-3.5
  • Anthropic: Claude
  • Cohere: Command models
  • Open Source: Hugging Face, Ollama

Orchestration Platforms:

  • LangChain: General-purpose framework
  • LlamaIndex: RAG-focused
  • Haystack: End-to-end NLP
  • Semantic Kernel: Microsoft’s framework

Fine-tuning Tools:

  • Hugging Face: Transformers library
  • LLaMA-Factory: Easy fine-tuning
  • Unsloth: Fast fine-tuning
  • Axolotl: Efficient training

3. Output Tools

Retrieve: Post-processing and evaluation tools for LLM outputs.

Purpose: Manage and refine LLM application outputs

Tools:

  • Evaluation Frameworks: TruEra, RAGas, LangSmith
  • Output Processing: Post-processing pipelines
  • Quality Assessment: Metrics and scoring

Evaluation Metrics:

  • Accuracy
  • Relevance
  • Coherence
  • Factual correctness
  • User satisfaction

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
# Evaluation example
from ragas import evaluate
from datasets import Dataset

# Evaluate RAG system
results = evaluate(
    dataset=dataset,
    metrics=[
        "faithfulness",
        "answer_relevancy",
        "context_precision"
    ]
)

4. Application Tools

Retrieve: Tools for hosting, monitoring, and managing LLM applications.

Purpose: Production deployment and operations

Components:

  • Hosting: Cloud platforms, containers
  • Monitoring: Performance, errors, usage
  • Scaling: Auto-scaling, load balancing

Tools:

  • Hosting: AWS, GCP, Azure, Vercel
  • Monitoring: LangSmith, Weights & Biases
  • APIs: FastAPI, Flask
  • Containers: Docker, Kubernetes

RAG vs. Fine-Tuning Tools

Innovate: Different tools are needed for RAG versus fine-tuning approaches.

ApproachKey ToolsFocus
RAGVector DBs, Retrievers, EmbeddingsData retrieval
Fine-TuningTraining frameworks, Datasets, GPUsModel training

RAG Tools:

  • Vector databases
  • Embedding models
  • Retrieval frameworks
  • Chunking tools

Fine-Tuning Tools:

  • Training frameworks
  • Dataset preparation
  • GPU resources
  • Experiment tracking

Tool Selection Guide

graph TD
    A[LLM Application Need] --> B{Approach?}
    B -->|RAG| C[RAG Tools]
    B -->|Fine-Tuning| D[Fine-Tuning Tools]
    B -->|Both| E[Hybrid Tools]
    
    C --> C1[Vector DB]
    C --> C2[Retrieval]
    C --> C3[Embeddings]
    
    D --> D1[Training Framework]
    D --> D2[Datasets]
    D --> D3[GPUs]
    
    style A fill:#e1f5ff
    style C fill:#fff3cd
    style D fill:#d4edda

Key Takeaways

Retrieve: LLM application tools fall into four categories: input processing, LLM development, output tools, and application tools, each serving different stages of development.

Innovate: By understanding tool categories and their purposes, you can select the right tools for RAG, fine-tuning, or hybrid approaches, building efficient LLM applications.

Curiosity β†’ Retrieve β†’ Innovation: Start with curiosity about LLM tools, retrieve insights from comprehensive guides, and innovate by selecting and combining tools for your specific use cases.

Note: This guide provides an overview of popular tools. For comprehensive coverage, explore the full guide linked above.

Next Steps:

  • Review the comprehensive guide
  • Identify tools for your use case
  • Experiment with different tools
  • Build your LLM application stack

 Tools for building LLM Application

Translate to Korean

πŸ₯ LLM μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜ ꡬ좕을 μœ„ν•œ κ°€μž₯ 인기 μžˆλŠ” 툴과 ν”„λ ˆμž„μ›Œν¬μ— λŒ€ν•œ 포괄적인 κ°€μ΄λ“œλ₯Ό 확인해 λ³΄μ„Έμš”.

  • πŸ‘‰ LLM μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜ ꡬ좕을 μœ„ν•œ ν™˜κ²½μ€ λ‹€μ–‘ν•œ 툴과 기술둜 ν’λΆ€ν•˜λ©°, 각 툴과 κΈ°μˆ μ€ μ„œλ‘œ λ‹€λ₯Έ μš”κ΅¬μ™€ ν”„λ‘œμ„ΈμŠ€ 단계λ₯Ό μΆ©μ‘±μ‹œν‚΅λ‹ˆλ‹€.

  • πŸ‘‰LLM 앱에 μ ν•©ν•œ 툴과 ν”„λ ˆμž„μ›Œν¬λ₯Ό μ°Ύκ³  μ„ νƒν•˜λŠ” 것이 핡심이며 μ‹œκ°„μ΄ κ±Έλ¦½λ‹ˆλ‹€. 이제 막 μ‹œμž‘ν•˜λ”λΌλ„ 무엇이 있고 λͺ¨λ“  것이 μ–΄λ–»κ²Œ ν•¨κ»˜ μž‘λ™ν•˜λŠ”μ§€ μ•„λŠ” 것이 맀우 μ€‘μš”ν•©λ‹ˆλ‹€!

β›³ μ˜μ‚¬ κ²°μ • 과정을 λ‹¨μˆœν™”ν•˜κΈ° μœ„ν•΄, LLM μ• ν”Œλ¦¬μΌ€μ΄μ…˜ κ°œλ°œμ— μ‚¬μš©ν•  수 μžˆλŠ” λ°©λŒ€ν•œ μ˜΅μ…˜ 풀을 νƒμƒ‰ν•˜λŠ” 데 도움이 λ˜λŠ” μžμ„Έν•œ κ°€μ΄λ“œλ₯Ό μž‘μ„±ν–ˆμŠ΅λ‹ˆλ‹€.

πŸ”° LLM νˆ΄μ€ 크게 λ„€ κ°€μ§€ λ²”μ£Όλ‘œ λΆ„λ₯˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

  • β›³ μž…λ ₯ 처리 도ꡬ: μ΄λŸ¬ν•œ λ„κ΅¬λŠ” 데이터 μˆ˜μ§‘μ„ μ²˜λ¦¬ν•˜κ³  μ• ν”Œλ¦¬μΌ€μ΄μ…˜μ— λŒ€ν•œ λ‹€μ–‘ν•œ μž…λ ₯을 μ€€λΉ„ν•˜λ„λ‘ μ„€κ³„λ˜μ—ˆμŠ΅λ‹ˆλ‹€. μ—¬κΈ°μ—λŠ” LLM을 μœ„ν•œ 데이터λ₯Ό μ²˜λ¦¬ν•˜κ³  μ€€λΉ„ν•˜λŠ” 데 μ€‘μš”ν•œ 데이터 νŒŒμ΄ν”„λΌμΈκ³Ό 벑터 λ°μ΄ν„°λ² μ΄μŠ€κ°€ ν¬ν•¨λ©λ‹ˆλ‹€.

  • β›³ LLM 개발 툴(LLM Development Tools): 이 μΉ΄ν…Œκ³ λ¦¬μ—λŠ” λ‹€μŒμ„ μ§€μ›ν•˜λŠ” 툴이 ν¬ν•¨λ©λ‹ˆλ‹€. λŒ€κ·œλͺ¨ μ–Έμ–΄ λͺ¨λΈκ³Ό μƒν˜Έ μž‘μš©ν•©λ‹ˆλ‹€. μ—¬κΈ°μ—λŠ” LLM 호좜, λ―Έμ„Έ μ‘°μ •, μ‹€ν—˜ μˆ˜ν–‰, μ˜€μΌ€μŠ€νŠΈλ ˆμ΄μ…˜ 관리λ₯Ό μœ„ν•œ μ„œλΉ„μŠ€κ°€ ν¬ν•¨λ©λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄ LLM κ³΅κΈ‰μž, μ˜€μΌ€μŠ€νŠΈλ ˆμ΄μ…˜ ν”Œλž«νΌ, μ»΄ν“¨νŒ… 및 μ‹€ν—˜ ν”Œλž«νΌμ΄ μžˆμŠ΅λ‹ˆλ‹€.

  • β›³ 좜λ ₯ 툴(Output Tools): LLM μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ˜ 좜λ ₯을 κ΄€λ¦¬ν•˜κ³  λ‹€λ“¬λŠ” 포슀트 ν”„λ‘œμ„Έμ‹± 툴이 이 범주에 μ†ν•©λ‹ˆλ‹€. LLM이 결과물을 μƒμ„±ν•œ ν›„μ˜ ν”„λ‘œμ„ΈμŠ€(예: 결과물의 ν’ˆμ§ˆκ³Ό 관련성을 ν‰κ°€ν•˜λŠ” 평가 ν”„λ ˆμž„μ›Œν¬)에 μ΄ˆμ μ„ 맞μΆ₯λ‹ˆλ‹€.

  • β›³ Application Tools: LLM μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ˜ λͺ¨λ“  츑면을 κ΄€λ¦¬ν•˜λŠ” 툴둜, ν˜ΈμŠ€νŒ…, λͺ¨λ‹ˆν„°λ§ 등을 ν¬ν•¨ν•©λ‹ˆλ‹€.

  • 🎯 이 κ°€μ΄λ“œμ—μ„œλŠ” μ΄λŸ¬ν•œ μœ ν˜•μ˜ 도ꡬ, λ‹€μ–‘ν•œ μ˜΅μ…˜, μž₯점 및 단점에 λŒ€ν•œ 심측적인 톡찰λ ₯을 μ œκ³΅ν•˜μ—¬ μ• ν”Œλ¦¬μΌ€μ΄μ…˜ λΉŒλ“œμ— μ‚¬μš©ν•  수 μžˆλŠ” ν•­λͺ©κ³Ό μ΄λŸ¬ν•œ λ¦¬μ†ŒμŠ€λ₯Ό κ°€μž₯ 잘 ν™œμš©ν•˜λŠ” 방법에 λŒ€ν•œ 포괄적인 보기λ₯Ό μ œκ³΅ν•©λ‹ˆλ‹€.

πŸ›‘ 이 κ°€μ΄λ“œλŠ” κ²°μ½” 포괄적이지 μ•ŠμœΌλ©° 인기 μžˆλŠ” 도ꡬ에 λŒ€ν•œ κ°œμš”λ§Œ μ œκ³΅ν•˜κΈ° μœ„ν•œ κ²ƒμž…λ‹ˆλ‹€!

μ΄λŸ¬ν•œ νˆ΄μ„ λΆ„λ₯˜ν•˜λŠ” 것 외에도 RAG에 ν•„μš”ν•œ 툴과 LLM을 λ―Έμ„Έ μ‘°μ •ν•˜λŠ” 데 ν•„μš”ν•œ νˆ΄μ„ κ΅¬λΆ„ν–ˆμŠ΅λ‹ˆλ‹€.

This post is licensed under CC BY 4.0 by the author.