Post

3D Language Gaussian Splatting ( LangSplat )

LangSplat: 3D Language Gaussian Splatting

Curiosity: How can we integrate semantic understanding into 3D Gaussian Splatting? What happens when we connect 3D reconstruction with language models for localized information retrieval?

LangSplat is a groundbreaking method that grounds CLIP features into 3D language Gaussians, achieving precise 3D language fields while being 199ร— faster than LERF. This research from Tsinghua University and Harvard University was accepted to CVPR 2024.

Why Semantic 3D Reconstruction Matters

Retrieve: Having semantics in 3D reconstruction enables powerful applications.

Applications:

  • ๐ŸŽฏ Segmentation: Semantic object segmentation
  • ๐Ÿ” Localized Information: Connect to LLMs for context-aware queries
  • ๐Ÿ“ Spatial Understanding: Language-guided 3D navigation
  • ๐Ÿ—ฃ๏ธ Interactive 3D: Natural language interaction with 3D scenes

Method Overview

graph TB
    A[3D Scene] --> B[CLIP Features]
    B --> C[3D Language Gaussians]
    C --> D[Language Field]
    
    E[SAM] --> F[Hierarchical Semantics]
    F --> C
    
    D --> G[Segmentation]
    D --> H[LLM Integration]
    D --> I[Localized Queries]
    
    style A fill:#e1f5ff
    style C fill:#fff3cd
    style D fill:#d4edda
    style H fill:#f8d7da

Key Innovations

InnovationDescriptionBenefit
CLIP GroundingGround CLIP features into 3D Gaussiansโฌ†๏ธ Semantic understanding
Hierarchical SemanticsLearn using SAMโฌ‡๏ธ Query complexity
Language FieldsPrecise 3D language representationโฌ†๏ธ Accuracy
Performance199ร— faster than LERFโฌ†๏ธ Speed

Technical Approach

Retrieve: The method grounds CLIP features into a set of 3D language Gaussians.

Process:

  1. Extract CLIP features from images
  2. Ground features into 3D Gaussian representation
  3. Learn hierarchical semantics using SAM
  4. Create precise 3D language fields

Advantages:

  • Eliminates extensive querying across scales
  • Removes need for DINO feature regularization
  • Faster inference
  • Better semantic understanding

Performance Comparison

MetricLERFLangSplatImprovement
SpeedBaseline199ร— fasterโฌ†๏ธ Massive
PrecisionGoodPreciseโฌ†๏ธ Better
Query EfficiencyExtensiveOptimizedโฌ‡๏ธ Reduced

Architecture

graph LR
    A[Input Images] --> B[CLIP Encoder]
    B --> C[Feature Extraction]
    C --> D[3D Gaussian Initialization]
    
    E[SAM] --> F[Hierarchical Learning]
    F --> D
    
    D --> G[3D Language Gaussians]
    G --> H[Language Field]
    H --> I[Applications]
    
    style A fill:#e1f5ff
    style G fill:#fff3cd
    style H fill:#d4edda
    style I fill:#f8d7da

Use Cases

Innovate: LangSplat enables new applications in semantic 3D understanding.

Applications:

  • Segmentation: Semantic object segmentation in 3D
  • LLM Integration: Connect to language models for queries
  • Localized Information: Retrieve context-aware information
  • Interactive 3D: Natural language interaction

Example Workflow:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Conceptual example
from langsplat import LangSplat

# Initialize LangSplat
langsplat = LangSplat(
    images=scene_images,
    camera_poses=camera_poses
)

# Build 3D language field
language_field = langsplat.build_language_field()

# Query with natural language
result = language_field.query(
    "Where is the red chair?",
    position=(x, y, z)
)

# Integrate with LLM
llm_response = llm.query(
    context=language_field.get_context(result),
    question="What objects are near the chair?"
)

Research Impact

Retrieve: This method represents a significant advancement in semantic 3D reconstruction.

Contributions:

  • First method to ground CLIP in 3D Gaussians
  • 199ร— speedup over previous methods
  • Hierarchical semantic learning
  • Practical for real-time applications

Key Takeaways

Retrieve: LangSplat grounds CLIP features into 3D language Gaussians, achieving precise semantic understanding while being 199ร— faster than previous methods.

Innovate: By combining 3D Gaussian Splatting with language understanding, LangSplat enables new applications in semantic segmentation, LLM integration, and interactive 3D scenes.

Curiosity โ†’ Retrieve โ†’ Innovation: Start with curiosity about semantic 3D reconstruction, retrieve insights from LangSplatโ€™s approach, and innovate by applying it to your 3D understanding applications.

๐Ÿง™ Paper Authors: Minghan Qinยน, Wanhua Liยฒโ€ , Jiawei Zhouยน, Haoqian Wangยนโ€ , Hanspeter Pfisterยฒ
(
indicates equal contribution, โ€  means Co-corresponding author)
ยนTsinghua University, ยฒHarvard University

  • 1๏ธโƒฃ Full Paper: arXiv
  • 2๏ธโƒฃ Project Page: LangSplat
  • 3๏ธโƒฃ Code: GitHub

Next Steps:

  • Read the full paper
  • Explore the project page
  • Check out the code repository
  • Experiment with semantic 3D reconstruction
Translate to Korean

3D ์žฌ๊ตฌ์„ฑ์—์„œ ์‹œ๋งจํ‹ฑ์„ ๊ฐ–๋Š” ๊ฒƒ์€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์— ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ LLM์— ์—ฐ๊ฒฐํ•˜์—ฌ ํ˜„์ง€ํ™”๋œ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ๊ฐ•๋ ฅํ•ฉ๋‹ˆ๋‹ค. 3D ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋ž˜ํŒ…์— ๋Œ€ํ•ด ๊ทธ๋ ‡๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๊นŒ?

Curiosity: Tsinghua University ๋ฐ Harvard University ์˜ โ€œLangSplat: 3D ์–ธ์–ด Gaussian Splattingโ€์„ ์‚ดํŽด๋ณด์‹ญ์‹œ์˜ค.

์ด ๋ฐฉ๋ฒ•์€ CLIP ๊ธฐ๋Šฅ์„ 3D ์–ธ์–ด ๊ฐ€์šฐ์‹œ์•ˆ ์„ธํŠธ๋กœ ์ ‘์ง€ํ•˜์—ฌ LERF๋ณด๋‹ค 199ร— ๋น ๋ฅด๋ฉด์„œ ์ •ํ™•ํ•œ 3D ์–ธ์–ด ํ•„๋“œ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.

๊ทธ๋“ค์€ SAM์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์ธต์  ์˜๋ฏธ๋ก ์„ ํ•™์Šตํ•  ๊ฒƒ์„ ์ œ์•ˆํ•˜๋ฏ€๋กœ ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์— ๊ฑธ์ณ ์–ธ์–ด ํ•„๋“œ๋ฅผ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ฟผ๋ฆฌํ•˜๊ณ  DINO ๊ธฐ๋Šฅ์„ ์ •๊ทœํ™”ํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค

ํ˜„์žฌ CVPR 2024์— ์Šน์ธ๋œ ์ด ๋ฐฉ๋ฒ•์„ ๊ฐ„๊ณผํ–ˆ์ง€๋งŒ ๋‹ค์‹œ ๋ฐœ๊ฒฌํ•˜๊ฒŒ ๋˜์–ด ๊ธฐ์ฉ๋‹ˆ๋‹ค. ๋‹น์‹ ๋„ ๋ณด์„ธ์š”.

This post is licensed under CC BY 4.0 by the author.